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Abstract

This paper presents a data-driven receding horizon fault estimation method for additive actuator and sensor faults in unknown
linear time-invariant systems, with enhanced robustness to stochastic identification errors. State-of-the-art methods construct
fault estimators with identified state-space models or Markov parameters, without compensating for identification errors.
Motivated by this limitation, we first propose a receding horizon fault estimator parameterized by predictor Markov parameters.
This estimator provides (asymptotically) unbiased fault estimates as long as the subsystem from faults to outputs has no
unstable transmission zeros. When the identified Markov parameters are used to construct the above fault estimator, stochastic
identification errors appear as model uncertainty multiplied with unknown fault signals and online system inputs/outputs
(I/O). Based on this fault estimation error analysis, we formulate a mixed-norm problem for the offline robust design that
regards online I/O data as unknown. An alternative online mixed-norm problem is also proposed that can further reduce
estimation errors at the cost of increased computational burden. Based on a geometrical interpretation of the two proposed
mixed-norm problems, systematic methods to tune the user-defined parameters therein are given to achieve desired performance
trade-offs. Simulation examples illustrate the benefits of our proposed methods compared to recent literature.
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1 Introduction

Model-based fault diagnosis techniques for linear dy-
namic systems have been well established during the past
two decades (Chen and Patton, 1999; Ding, 2013). Re-
cently, the model-based receding horizon approach has
received attention because it provides a flexible frame-
work to enhance robustness of passive fault diagnosis
(Zhang and Jaimoukha, 2014) and to enable optimal
input design in active fault diagnosis (Raimondo et al.,
2013). However, an explicit and accurate system model
is often unknown in practice. In such situations, a con-
ventional approach first identifies the system model from
system I/O data, and then designs the model-based fault
diagnosis system (Simani et al., 2003; Patwardhan and
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Shah, 2005; Manuja et al., 2009). Without explicitly
identifying a system model, recent research efforts in-
vestigate data-driven approaches to construct a fault di-
agnosis system utilizing the link between system iden-
tification and the model-based fault diagnosis methods
(Russel et al., 2000; Ding, 2014). Such data-driven ap-
proaches simplify the design procedure by skipping the
realization of an explicit system model, while at the same
time allow developing systematic methods to address the
same fault diagnosis performance criteria as the existing
model-based approaches.

Most recent data-driven fault diagnosis approaches for
unknown linear dynamic systems can be classified into
two categories. The first category, e.g., Qin and Li (2001)
and Ding (2014), identifies a projection matrix known
as parity space/vectors for residual generation, by ex-
ploiting the subspace identification method based on
principal component analysis (SIM-PCA). However, as
pointed out in Dong et al. (2012a), a model reduction
step is needed to determine the projection matrix, hence
leads to the nonlinear dependence of the generated resid-
uals on the identification errors. Therefore it is difficult
to guarantee the robustness of such data-driven methods
to the identification errors.
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The second category of data-driven fault diagnosis
methods, e.g., Dong et al. (2012a,b), utilizes the Markov
parameters (or impulse response parameters). It first
constructs residual generators parameterized by the
predictor Markov parameters (MPs). Then the residual
signal linearly depends on the identification errors of the
predictor MPs. Hence a robust scheme can be developed
to cope with stochastic identification errors.

Compared to fault detection and isolation, it is much
more involved to estimate the fault signal in the data-
driven setting. The work in Alcala and Qin (2009)
proposed to reconstruct faults by minimizing the recon-
structed squared prediction error obtained from PCA.
However, this approach did not fully investigate the sta-
tistical estimation performance. The method in Dong
and Verhaegen (2012) constructed system-inversion
based fault estimators with the predictor MPs. Its fault
estimates are asymptotically unbiased as the estimation
horizon length tends to infinity, if the underlying in-
verted system is stable. However, it cannot be directly
applied to sensor faults in an unstable open-loop plant
because its underlying inverted system is unstable.
Moreover, it does not compensate for the identification
errors. The robustness of fault estimation to the iden-
tification errors is critical in two situations: 1) there
exist large identification errors due to small number of
identification data samples or low signal-to-noise ratio
in identification data; 2) multiplication of the erroneous
identified model with online I/O data of large amplitude
cannot be simply ignored.

Motivated by the above two drawbacks of the proposed
method in Dong and Verhaegen (2012), this paper de-
velops data-driven robust fault estimation methods for
additive actuator/sensor faults, utilizing the identified
MPs. In order to pave the way for data-driven design, we
first construct a receding horizon (RH) fault estimator
parameterized by the predictor MPs, assuming that the
predictor MPs are accurately available. It gives (asymp-
totically) unbiased fault estimates under the condition
that the fault subsystem has no unstable transmission
zeros. The above condition for unbiasedness generalizes
the requirement of stable inversion in Dong and Ver-
haegen (2012). An immediate benefit is that our ap-
proach can be applied to sensor faults in unstable open-
loop plants as long as the above condition for unbiased-
ness is satisfied, whereas the proposed method in Dong
and Verhaegen (2012) cannot.

Our data-driven design parameterizes the above RH
fault estimator with predictor MPs identified from data.
The obtained data-driven fault estimation error is linear
with regards to the stochastic identification errors of
MPs, although the identification errors appear as mul-
tiplicative uncertainty that couples with unknown fault
signals as well as online I/O data. In order to enhance
robustness to stochastic identification errors, we propose
two mixed-norm fault estimators. The first one can be

designed offline by regarding the online I/O data as un-
known. By exploiting online I/O data in its formulated
mixed-norm problem, the second robust fault estimator
further reduces estimation errors when the online I/O
data have large amplitudes, at the cost of increased
online computational burden. Based on a geometric in-
terpretation of the formulated mixed-norm problems, a
systematic tuning method for the user-defined parame-
ters therein is provided to achieve the desired trade-offs
between estimation bias and variance. Our proposed
methods can handle sensor and actuator faults either
separately or simultaneously. Only the separate scenario
is illustrated in detail in this paper. Exact formulas for
the simultaneous scenario can be derived in a straight-
forward manner but are omitted for the sake of brevity.

The rest of this paper starts with the problem formula-
tion and some preliminaries on identification of predictor
MPs in Section 2. Section 3 constructs the predictor-
based RH fault estimator, and analyzes its condition for
unbiasedness. A data-driven nominal fault estimator is
given in Section 4. Sections 5 and 6 propose two mixed-
norm fault estimators with robustness to identification
errors. Simulation studies are given in Section 7.

2 Preliminaries and problem formulation

2.1 Notations

For a matrix X, its range and null space is denoted by
R (X) and N (X), respectively. X− represents the left
inverse satisfying X−X = I, while X(1) represents the
generalized inverse satisfying

XX(1)X = X. (1)

X [i] represents the ith column of X. The trace of X is
denoted by tr (X). Let ‖X‖F represent the Frobenius
norm of the matrixX. The minimal eigenvalue of a sym-
metric matrix X is represented by λmin (X). Let vec (X)
represent the column vector concatenating the columns
of X. The symbol “⊗” stands for Kronecker product.
Let diag (X1, X2, · · · , Xn) denote a block-diagonal ma-
trix with X1, X2, · · · , Xn as its diagonal matrices.

2.2 Problem formulation

We consider linear discrete-time systems governed by
the following state space model:

ξ(k + 1) = Aξ(k) +Bu(k) + Ef(k) + Fw(k)

y(k) = Cξ(k) +Du(k) +Gf(k) + v(k).
(2)

Here ξ(k) ∈ Rn, y(k) ∈ Rny , and u(k) ∈ Rnu rep-
resent the state, the output measurement, and the
known control input at time instant k, respectively.
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The process and measurement noises w(k) ∈ Rnw and
v(k) ∈ Rnv are white zero-mean Gaussian, with covari-
ance matrices E

(
w(k)wT(k)

)
= Q, E

(
v(k)vT(k)

)
= R,

E
(
w(k)vT(k)

)
= 0. f(k) ∈ Rnf is the unknown fault

signal to be estimated. A,B,C,D,E, F,G are constant
real matrices with appropriate dimensions.

Assumption 1 The system (2) admits the one-step-
ahead predictor form given by Kailath et al. (2000);
van der Veen et al. (2012)

x(k + 1) = Φx(k) + B̃u(k) + Ẽf(k) +Ky(k)

y(k) = Cx(k) +Du(k) +Gf(k) + e(k),
(3)

where K is the steady-state Kalman gain, Φ = A−KC,
B̃ = B−KD, and Ẽ = E−KG, {e(k)} is the zero-mean
innovation process with the covariance matrix Σe.

We consider additive sensor or actuator faults in this
paper, i.e.,

jth sensor fault: E = 0nx×1, G = I [j], Ẽ = −K [j];
(4)

lth actuator fault: E = B[l], G = D[l], Ẽ = B̃[l]; (5)

with X [j] representing the jth column of a matrix X.

Denote the predictor MPs by

Hu
i =

{
D i = 0

CΦi−1B̃ i > 0
, Hy

i =

{
0 i = 0

CΦi−1K i > 0
,

Hf
i =

{
G i = 0

CΦi−1Ẽ i > 0
.

(6)

Assumption 2 The relative degree of the fault sub-

system
(

Φ, Ẽ, C,G
)

is τ , i.e., τ is the smallest nonneg-

ative integer i such that Hf
0 = Hf

1 = · · · = Hf
i−1 = 0

and Hf
i 6= 0 (Kirtikar et al., 2011); moreover,

rank
(
Hf
τ

)
= nf (Dong and Verhaegen, 2012).

Note that τ = 0 for sensor faults and τ ≥ 0 for actuator
faults.

The essential goals of this paper are to design a fault
estimator from identification data without knowing the
system matrices in (2), and moreover to robustify the
fault estimator against model identification errors. We
make no assumption about how the fault signals f(k)
vary with time.

Note that in practice data from faulty conditions may
be seldomly available, or if recorded then without a reli-
able fault description (Ding, 2014). Hence we make the
following assumption about identification data:

Assumption 3 Only I/O data collected from the fault-
free condition are used in our data-driven design.

2.3 Closed-loop identification of predictor Markov pa-
rameters

Considering Assumption 3, we set f(k) = 0 in (2) for
the fault-free identification data. Then the predictor
form (3) over the time window [t, · · · , t+N − 1] can be
written into the following data equation (Chiuso, 2007;
van der Veen et al., 2012):

Yid = CΦpXid + ΞZid + Eid, (7)

where

Ξ =
[
Hu
p Hy

p · · · Hu
1 Hy

1 Hu
0

]
(8)

denotes the sequence of MPs {Hu
i } and {Hy

i } (defined in
(6)) to be identified. The detailed definitions of the data
matrices Xid, Yid and Zid can be found in van der Veen
et al. (2012), and Eid is the sequence of the innovation
signal in the identification data.

The least-squares (LS) estimate of the MPs Ξ is

Ξ̂ = arg min
Ξ

‖Yid − ΞZid‖2F = YidZ−id

= Ξ + CΦpXidZ−id + EidZ−id,
(9)

with Z−id = ZT
id

(
ZidZT

id

)−1
. As standard assumptions

for consistent identification from closed-loop data, we
assume that 1) the data matrix Zid has full row rank,
and 2) either the controller has at least one-step delay
or the plant model has no direct feedthrough (D = 0)
(Chiuso, 2007; van der Veen et al., 2012).

With sufficiently large p, the estimation bias CΦpXidZ−id
can be neglected. Then the stochastic identification er-
rors are

∆Ξ̂ = Ξ̂− Ξ ≈ EidZ−id. (10)

Hence the identification errors in MPs can be obtained
from (10) as

∆Hu
i = Ĥu

i −Hu
i = EidM

u
i ,

∆Hy
i = Ĥy

i −H
y
i = EidM

y
i ,

(11)

where Ĥu
i and Ĥy

i represent the estimated MPs in Ξ̂
given by (9), Mu

i and My
i are the corresponding blocks

of Z−id, i.e.,

Z−id =
[
Mu
p My

p · · · Mu
1 My

1 Mu
0

]
, My

0 = 0. (12)
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The innovation covariance can be estimated by van der
Veen et al. (2012)

Σ̂e = cov
(
Yid − Ξ̂Zid

)
. (13)

We assume sufficiently large p and sufficiently large
number of identification data samples to ensure an
accurate enough estimate Σ̂e for data-driven fault esti-
mation. In this sense, we shall not distinguish between
Σ̂e and its true value Σe in the rest of this paper, for the
sake of brevity and simpler notation.

Remark 4 For the data-driven fault estimation
problem, we need p to be sufficiently large to make the
bias of the identified MPs negligible, and meanwhile,
avoid unnecessarily large p to keep their variance small.

3 Predictor-based receding horizon fault esti-
mation

In this section, we will construct an RH fault estimator
based on the predictor form (3) of the system (2), in
order to pave the way for data-driven design.

Consider a sliding window with L sampling instants.
Define stacked data vectors in this time window as uk,L,
yk,L, fk,L, and ek,L, respectively for u, y, f , and e; e.g.,

uk,L =
[
uT (k0) · · · uT (k)

]T
, (14)

with k0 = k − L+ 1. For the predictor form (3), let OL
denote its extended observability matrix with L block
elements, and T?

L be the lower triangular block-Toeplitz
matrix with L block columns and rows, with ? repre-
senting u, y, or f :

OL =

 C
CΦ
...

CΦL−1

 , T?
L =


H?0 0 ... 0

H?1 H?0

. . .
...

...
...

. . . 0
H?L−1 H

?
L−2 ··· H

?
0

 . (15)

Given the I/O data over the sliding window [k0, k], the
stacked residual signal rk,L in [k0, k] can be computed by

rk,L = yk,L −Ty
Lyk,L −Tu

Luk,L, (16)

according to the predictor form (3). We can further write
down the transitions from unknown initial state, faults
and noises to the stacked residual signal rk,L as

rk,L = OLx(k0) + Tf
Lfk,L + ek,L. (17)

With Assumption 2, (17) can be simplified as

rk,L =
[
OL Tf

L,τ

]
︸ ︷︷ ︸

ΨL,τ

[
x(k0)

fk−τ,L−τ

]
︸ ︷︷ ︸

fx
k−τ,L−τ

+ek,L,
(18)

where τ is the relative degree, Tf
L,τ represents the first

L − τ block-columns of Tf
L defined similar to (15),

fk−τ,L−τ is defined in the same way as in (14).

With (18), we can formulate the receding horizon fault
estimation (RHFE) problem

min
fx
k−τ,L−τ

∥∥rk,L −ΨL,τ f
x
k−τ,L−τ

∥∥2

Σ−1
e,L

(19)

in the LS sense, with

Σe,L = IL ⊗ Σe (20)

denoting the covariance matrix of ek,L. It has non-unique
solutions because ΨL,τ may not have full column rank.
One solution to the problem (19) is

f̂xk−τ,L−τ =
(

ΨT
L,τΣ−1

e,LΨL,τ

)(1)

ΨT
L,τΣ−1

e,Lrk,L. (21)

We will show in the following theorem, however, that the
last nf entries of f̂xk−τ,L−τ , i.e.,

f̂ (k − τ) = Inf f̂xk−τ,L−τ (22)

with Inf = [ 0 Inf ] ∈ Rnf×(n+nf (L−τ)), represent an

(asymptotically) unbiased estimate of f (k − τ) under
certain conditions. The estimation delay τ in (22) is
caused by the relative degree in Assumption 2.

Theorem 5 Let τ and ν denote the relative degree
and the observability index of the fault subsystem
(Φ, Ẽ, C,G), respectively.

(i) The τ -delay fault estimate f̂(k − τ) defined in
(22) is unbiased for all L ≥ ν + τ if and only if

(Φ, Ẽ,Oτ+1,H
f
τ ) has no transmission zeros, with

Hf
τ =

[
(Hf

0 )T (Hf
1 )T · · · (Hf

τ )T
]T
. (23)

(ii) The τ -delay fault estimate f̂(k−τ) is asymptotically
unbiased for L→∞ if and only if all transmission
zeros of (Φ, Ẽ,Oτ+1,H

f
τ ) are stable.

The proof is given in Appendix B.
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Instead of including the unknown initial state as in the
RHFE problem (19), the essential idea of Dong and Ver-
haegen (2012) is to find a lower triangular block-Toeplitz

matrix Tg
L such that Tg

LTf
L,τ = I and the estimation

error caused by the unknown initial state exponentially
decays with L. The condition for unbiasedness in Dong
and Verhaegen (2012) requires that the inverse system
related to Tg

L is stable. However this has several draw-
backs: it does not clarify how the unbiasedness condi-
tion is related to the system property of the underlying
plant; and moreover, for the case of sensor faults in an
open-loop unstable plant, Dong and Verhaegen (2012)

did not find a stable left inverse Tg
L for Tf

L,τ .

On the contrary, Theorem 5 clearly states that the con-
dition for unbiasedness is related to the invariant zeros
of the fault subsystem in the underlying plant. An imme-
diate benefit is that our proposed RH fault estimator can
ensure (asymptotically) unbiased estimates for sensor
faults in an open-loop unstable plant, as long as the fault
subsystem has no unstable transmission zeros.

Remark 6 Theorem 5 is related to the τ -delay left in-
version in Massey and Sain (1968); Gillijns (2007) and
the τ -delay input and initial-state reconstruction in Kir-
tikar et al. (2011). However, the τ -delay left inversion
in Massey and Sain (1968); Gillijns (2007) requires the
initial state to be known a priori, while the τ -delay input
and initial-state reconstruction in Kirtikar et al. (2011)
requires observability of the pair (Φ, C). Note that when
solving the RHFE problem (19), we are interested in only
the fault estimate (22) without unbiased reconstruction
of the unknown initial state. This intuitively explains why
Theorem 5 can cope with the unknown initial state in the
case that (Φ, C) is detectable.

Remark 7 Theorem 5 above generalizes Theorems 1
and 2 in Wan et al. (2014) from the case τ = 0 to general
relative degrees. It should be noted that Theorem 5 can
also be given using the original system (2), as in Wan
et al. (2014). By exploiting the relations between the
original system (2) and its predictor (3) (refer to Sec-
tion 7.1.5 of Ding (2013) and Chapter 8 of Kailath et al.
(2000)), we can prove that the RH fault estimators ob-
tained from the above two system models are equivalent,
and have the same statistical estimation performance.
The detailed proof is omitted due to the page limit.

Next, we briefly analyse how the estimation variance of

f̂(k − τ) in (21) and (22) varies when increasing the
length of the estimation horizon from L to L1 = L+ q.
We equivalently rewrite the RHFE problem (19) with
the horizon length L1 into the following constrained LS

problem by exploiting the dynamic equation of (3):

min
x(k0−q),x(k0),

fk−τ,L−τ ,fk0−1,q

∥∥∥rk,L −OLx(k0)−Tf
L,τ fk−τ,L−τ

∥∥∥2

Σ−1
e,L

+
∥∥rk0−1,q −Oqx(k0 − q)−Tf

q fk0−1,q

∥∥2

Σ−1
e,q

s.t. x(k0) = Φqx(k0 − q) +
[
Φq−1Ẽ · · · Ẽ

]
fk0−1,q.

(24)
In the cost function of (24), the first term is exactly the
cost function of (19). Note that x(k0) is completely un-
known in the problem (19). In contrast, the additional
residual signal rk0−1,q in the problem (24) may provide
more information about x(k0) through the second term
of its cost function and the constraint, thus improves the

fault estimates f̂(k−τ) in (24). Due to the space limita-
tion, we give the following statement without proof: by
substituting the constraint of (24) into its cost function,
there exist matrices N1 and N2 such that the second cost
term becomes ‖rk0−1,q −N1x(k0)−N2η‖2Σ−1

e,q
, where η

is a linear combination of x(k0 − 1) and fk0−1,q. If we

can find a nonsingular matrix R = [R1 R2] so that

RT
2 N2 = 0 and RT

2 N1 6= 0, then the second cost term
above can be transformed into∥∥∥∥∥R−1

[
RT

1 (rk0−1,q −N1x(k0)−N2η)

RT
2 rk0−1,q −RT

2 N1x(k0)

]∥∥∥∥∥
2

Σ−1
e,q

.

The above equation shows that the estimate of f(k− τ)
within fk−τ,L−τ can be improved by exploiting new infor-
mation about x(k0) in RT

2 rk0−1,q. If such a nonsingular
matrix R does not exist, the additional residual signal
rk0−1,q cannot help reduce the variance of the fault es-

timate f̂(k − τ).

4 Data-driven nominal receding horizon fault
estimator

In this section, we will parameterize the RH fault esti-
mator introduced in Section 3 with the predictor MPs,
and then provide the nominal data-driven design method
without considering identification errors.

In order to construct the LS fault estimator (21), we
first need to construct the block-Toeplitz matrices Tu

L,

Ty
L, and Tf

L from the predictor MPs according to (15).
Then, we need the extended observability matrix OL.
One possible approach is to identify OL from the block-
Hankel matrix

Ho
L,m =


Hu1 Hu2 ··· Hum
Hu2 Hu3 ··· Hum+1

...
...

. . .
...

HuL HuL+1 ··· H
u
L+m−1

 (25)
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through a model reduction step (van der Veen et al.,
2012). But this model reduction step would make the
fault estimation error depend nonlinearly on the identi-
fication errors. In order to avoid this difficulty, we sub-
stitute OLx(k0) = Ho

L,mζm into (18) by exploiting the
following property:

R (OL) = R
(
Ho
L,m

)
(26)

for m ≥ n. Then (18) can be rewritten as

rk,L =
[

Ho
L,m Tf

L,τ

]
︸ ︷︷ ︸

ΥL,τ

[
ζm

fk−τ,L−τ

]
︸ ︷︷ ︸

fζ
k−τ,L−τ

+ek,L, (27)

where Tf
L,τ consists of the first L − τ block-columns of

Tf
L defined in (15). By doing so, the fault estimation

error becomes linear with regards to the identification
errors, as shown later in (41).

However, the rank deficiency of the block-Hankel matrix
Ho
L,m in (27) implies that the complete fault signal in

the considered time horizon cannot be uniquely recon-
structed from rk,L. Despite of this situation, we may still
follow (21) and (22) to derive one LS solution

f̂ζk−τ,L−τ =
(

ΥT
L,τΣ−1

e,LΥL,τ

)(1)

ΥT
L,τΣ−1

e,Lrk,L (28)

and its corresponding fault estimate

f̂ (k − τ) = Inf f̂
ζ
k−τ,L−τ = Gnrk,L, (29)

Gn = Inf
(

ΥT
L,τΣ−1

e,LΥL,τ

)(1)

ΥT
L,τΣ−1

e,L. (30)

Moreover, by exploiting the link between (27) and the
state-space predictor based residual generator (18), we
are able to give the following condition for unbiasedness
of (28)-(29). The proof is given in Appendix C.

Theorem 8 The sufficient and necessary condition for
unbiased estimation in Theorem 5 applies to the fault
estimate defined in (28)-(29).

Without considering the identification errors, the data-
driven design of the above nominal RH fault estimator
can now be summarized in Algorithm 1.

Remark 9 We may obtain (27) also from a vector ARX
model whose coefficients are just the predictor MPs. How-
ever, a simple ARX model cannot fully address the con-
dition for unbiased estimation due to rank deficiency of
the block-Hankel matrix Ho

L,m.

Algorithm 1 Data-driven nominal RH fault estimation

1) Collect identification data from the fault-free con-
dition, and form the data matrices Yid and Zid

with sufficiently large p (van der Veen et al., 2012).

2) Compute the sequence of MPs Ξ̂ and the innova-

tion covariance Σ̂e via (9) and (13); extract the

identified MPs Ĥu
i and Ĥy

i from Ξ̂ according to

(8); and extract Ĥf
i according to (4)-(6):

• for jth sensor faults:

Ĥf
i = −(Ĥy

i )[j] for i > 0, and Ĥf
0 = I [j];

(31)
• or for lth actuator faults:

Ĥf
i = (Ĥu

i )[l] (i ≥ 0). (32)

3) Select sufficiently large L. Construct the esti-

mates of Σe,L in (20), Ty
L, Tu

L, Tf
L in (15), Ho

L,m

in (25), and ΥL,τ in (27) as Σ̂e,L, T̂y
L, T̂u

L, T̂f
L,

Ĥo
L,m, and Υ̂L,τ by using Σ̂e and the identified

MPs {Ĥu
i , Ĥ

y
i , Ĥ

f
i }. Form T̂f

L,τ with the firstL−τ
block-columns of T̂f

L.
4) Compute the nominal fault estimator Gn ac-

cording to (30).

5 Data-driven robust receding horizon fault es-
timation

The data-driven nominal design in Algorithm 1 might
give biased fault estimates due to errors in the identified
MPs. We will propose two robust designs in the following
sections to address this problem.

5.1 Data-driven robust design

Since the MPs related to faults are extracted from Ĥu
i

or Ĥy
i via (32) or (31), the identification errors of Ĥf

i
can be expressed as

∆Hf
i = EidM

f
i , (33)

where

Mf
i =

{
(Mu

i )
[j]

for faults of the jth actuator

− (My
i )

[j]
for faults of the jth sensor

(34)

with Mu
i and My

i defined in (11)-(12).

With (11) and (33), the estimated matrices T̂y
L, T̂u

L,
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T̂f
L,τ , Ĥo

L,m and Υ̂L,τ in Algorithm 1 can be written as

Ĥo
L,m = Ho

L,m + ĒidM̄o
L,m, T̂y

L = Ty
L − ĒidM̄y

L, (35)

T̂u
L = Tu

L + ĒidM̄u
L, T̂f

L,τ = Tf
L,τ + ĒidM̄f

L,τ , (36)

Υ̂L,τ = ΥL,τ + ĒidM̄Υ, (37)

where M̄o
L,m is the block-Hankel matrix constructed

with Mu
1 ,M

u
2 , · · · ,Mu

L+m−1 similarly to Ho
L,m in (25),

M̄?
L is the block-Toeplitz matrix constructed with

M?
0 ,M

?
1 , · · · ,M?

L−1 similarly to T?
L in (15) with ? rep-

resenting u, y, or f ,

Ēid = diag (Eid,Eid, · · · ,Eid)︸ ︷︷ ︸
L blocks

, M̄Υ =
[

M̄o
L,m M̄f

L,τ

]
,

(38)

and M̄f
L,τ consists of the first L − τ block-columns of

M̄f
L.

Based on (35)-(37), we can write down the residual signal
r̂k,L considering identification errors according to (16)-
(18) and (27):

r̂k,L = yk,L − T̂y
Lyk,L − T̂u

Luk,L

= ΥL,τ f
ζ
k−τ,L−τ + ek,L +

(
Ty
L − T̂y

L

)
yk,L

+
(
Tu
L − T̂u

L

)
uk,L

=
(

Υ̂L,τ − ĒidM̄Υ

)
fζk−τ,L−τ + ek,L

− Ēid

[
−M̄y

L M̄u
L

]
︸ ︷︷ ︸

M̄z
L

[
yk,L

uk,L

]
︸ ︷︷ ︸

zk,L

.

(39)

Based on the above analysis of the residual signal, we
will first propose in this section an offline robust design
which regards zk,L as unknown, and then propose in
Section 6 another online robust design that exploits the
measured I/O data zk,L in online optimization.

Similarly to Gn in (29), let the matrix G denote the τ -
delay fault estimator based on the residual r̂k,L, i.e.,

f̂(k − τ) = Gr̂k,L. (40)

It follows from (39) that the fault estimation error is

∆f(k − τ) = f̂(k − τ)− Inf f
ζ
k−τ,L−τ

=
(
GΥ̂L,τ − GĒidM̄Υ − Inf

)
︸ ︷︷ ︸

Tf (G)

fζk−τ,L−τ

− GĒidM̄z
L︸ ︷︷ ︸

Tz(G)

zk,L + Gek,L

(41)

with Inf defined in (29). It can be seen that Ēid appears
as multiplicative uncertainty coupled with the true aug-

mented fault signal fζk−τ,L−τ and the online I/O data
zk,L.

We regard fζk−τ,L−τ and zk,L as unknown but energy

bounded. Hence fζk−τ,L−τ and zk,L in the first two terms

of (41) lead to an estimation bias, while the online in-
novation signal ek,L in the third term causes zero mean,
stochastic estimation errors. We would like to reduce
the estimation bias by minimizing the matrix 2-norms
‖Ts (G)‖2 (s = f, z), and at the same time minimize the

Frobenius norm tr
(
GΣe,LGT

)
by using the available in-

novation covariance Σe,L. These three objectives are for-
mulated by the following mixed-norm problem:

Gr,off = arg min
G

tr
(
GΣe,LGT

)
s.t. Ē

(
Ts (G) T T

s (G)
)
≤ γ2

sI, s = f, z
(42)

where the matrix G denotes the τ -delay fault esti-
mator (40), Ē denotes mathematical expectation over
the identification innovations Ēid, γf > 0 and γz > 0
are the user-defined parameters to achieve a trade-
off between estimation error variance and bias. Note
that the matrix 2-norms ‖Ts (G)‖2 (s = f, z) are af-
fected by the stochastic identification innovations Ēid

according to (41), hence their mathematical expecta-
tions are used in (42). Note also that it is straightfor-
ward to prove Ē

(
T T
s (G) Ts (G)

)
≤ γ2

sI holds if and

only if Ē
(
Ts (G) T T

s (G)
)
≤ γ2

sI in (42) holds. Here

we use Ē
(
Ts (G) T T

s (G)
)

in (42), because it brings a
clear geometrical interpretation for parameter tuning
as explained later in Section 5.2. With the tedious but
straightforward derivations summarized in Appendix
D, the above problem (42) can be explicitly written as

Gr,off = arg min
G

tr
(
GΣe,LGT

)
(43a)

s.t.
[
G Inf

] [ Πf −Υ̂L,τ

−Υ̂T
L,τ Inf

][
GT

IT
nf

]
≤ γ2

fI (43b)

GΠzGT ≤ γ2
zI, (43c)

with Πf and Πz defined in (D.5) and (D.6), respectively.
The mixed-norm problem (43) can be transformed
into an equivalent semi-definite programming (SDP)
problem that can be solved efficiently (Boyd and Van-
denberghe, 2004). Since the optimization problem (43)
is determined only by the identification data and does
not involve any online I/O data, it can be solved offline
to obtain the robust fault estimator denoted by Gr,off .
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5.2 Parameter tuning using geometric interpretation

Next, we will provide a systematic method to tune the
two user-defined parameters γ2

f and γ2
z by using a geo-

metric interpretation of the mixed-norm problem (43).

With some matrix manipulations, we can see that the
constraints (43b) and (43c) define two ellipsoids

Ωf =
{
G
∣∣∣(G − G0) Πf (G − G0)

T ≤ G0ΠfGT
0 − I + γ2

fI
}
,

(44)
Ωz =

{
G
∣∣GΠzGT ≤ γ2

zI
}
, (45)

respectively, with G0 = Inf Υ̂T
L,τΠ−1

f . Since the objective

function (43a) can be regarded as a measure of the dis-
tance from G to the origin 0nf×(ny·L), the problem (43)
is equivalent to finding the point Gr,off in the set Ωf

⋂
Ωz

that is closest to the origin, as shown in Fig. 1.

First, we would like to find the region of γ2
f and γ2

z so that

the optimization problem (43) is feasible and non-trivial.
In the case that the origin 0nf×(ny·L) ∈ Ωf

⋂
Ωz, we

would have the trivial solution Gr,off = 0nf×(ny·L) which
makes no sense for fault estimation. Hence 0nf×(ny·L) /∈
Ωf and Ωf 6= ∅ are both required, which implies the
region of γ2

f as below according to (44):

1− λmin

(
G0ΠfGT

0

)
= γ2

f,min ≤ γ2
f < 1. (46)

For a given γ2
f satisfying (46), we solve the following

optimization problem{
Gmin, γ

2
z,min

}
= arg min

G,γ2
z

γ2
z s.t. (43b) and (43c)

(47)
whose solution gives the minimal γ2

z , referred to as
γ2
z,min, that ensures Ωf

⋂
Ωz 6= ∅. Therefore, we should

select γ2
z ∈

[
γ2
z,min,∞

)
to ensure feasibility of the

problem (43). The ellipsoid Ωz,min in Fig. 1 represents
the ellipsoid Ωz with γ2

z = γ2
z,min, and its intersection

with the ellipsoid Ωf includes only the single point Gmin.

By discarding the constraint (43c) from the problem (43)
and fixing γ2

f at the same given value as in (47), we
formulate another problem

G1 = arg min
G

tr
(
GΣe,LGT

)
s.t. (43b) (48)

Because the optimal solution G1 gives the shortest dis-
tance from the origin to the ellipsoid Ωf , and more-
over 0nf×(ny·L) /∈ Ωf , the solution G1 must lie at the
boundary of the ellipsoid Ωf , as shown in Fig. 1. Define
γ2
z,1 = λmax

(
Ē
(
Tz (G1) T T

z (G1)
))

. Let the ellipsoid Ωz,1
in Fig. 1 represent the set Ωz with γ2

z = γ2
z,1, and it has

the solution G1 at its boundary.

Similarly to the above obtained solution G1 of the
problem (48), the solution Gr,off of the problem (43) also
lies at the boundary of the ellipsoid Ωf . This allows the
three terms of the fault estimation error in (41) to be
explained using Fig. 1:

1) The bias related to the first term Tf (G) fζk−τ,L−τ is
determined by the size of the ellipsoid Ωf ;

2) The bias related to the second term Tz (G) zk,L is
determined by the size of the ellipsoid Ωz (Gr,off)
with Gr,off lying on its boundary, i.e., the ellipsoid
Ωz with γ2

z = λmax

(
Ē
(
Tz (Gr,off) T T

z (Gr,off)
))

;
3) The fault estimation error variance related to the

third term Gek,L is represented by the distance from
the origin to the optimal solution Gr,off .

With the above basic geometric interpretation, we can
analyze the performance trade-offs of the robust fault

estimator Gr,off when tuning γ2
f ∈

[
γ2
f,min, 1

)
and γ2

z ∈[
γ2
z,min,∞

)
, as shown in Table ??. First, we fix γ2

f and

tune γ2
z . In this case, the ellipsoid Ωf is fixed, which

makes the first bias term in the first two rows of Table
?? remain constant. With the fixed γ2

f , by increasing γ2
z

from γ2
z,min towards γ2

z,1, the intersection set Ωf
⋂

Ωz
becomes larger, and the optimal solution Gr,off moves
from the point Gmin along the boundary of the ellipsoid
Ωf towards the point G1. When we further increase γ2

z

for γ2
z ≥ γ2

z,1, the optimal solution Gr,off of the problem
(43) would remain located at the point G1, because G1

satisfies both constraints (43b) and (43c) and gives the
shortest distance to the origin according to the problem
(48). Therefore, the size of the ellipsoid Ωz (Gr,off), which
determines the second estimation bias term in the first
two rows of Table ??, monotonically increases for γ2

z ∈[
γ2
z,min, γ

2
z,1

)
and remains constant for γ2

z ∈
[
γ2
z,1,∞

)
.

The distance from the origin to Gr,off , which determines
the fault estimation error variance in the first two rows of
Table ??, monotonically decreases for γ2

z ∈
[
γ2
z,min, γ

2
z,1

)
and remains constant for γ2

z ∈
[
γ2
z,1,∞

)
. For the third

row of Table ??, we tune γ2
f and select a sufficiently large

value of γ2
z that ensures the problem (43) to be feasible.

With γ2
f increasing, the size of the ellipsoid Ωf , which

determines the first bias term in the third row of Table
??, monotonically increases. Meanwhile, the optimal so-
lution Gr,off , which lies at the boundary of the ellip-
soid Ωf , moves closer to the origin. Therefore, both the
second bias term and the fault estimation error variance
in the third row of Table ??, which are determined by
the size of the ellipsoid Ωz (Gr,off) and the distance from
the origin to the point Gr,off , monotonically decrease.

We summarize the data-driven robust design in Algo-
rithm 2. The nominal design Gn obtained from Algorithm
1 can be used as a benchmark for tuning γ2

f and γ2
z in

Step 2 of Algorithm 2, e.g., compared to the nominal de-
sign, the robust design achieves smaller averaged worst-

8
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r,offG
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Fig. 1. Geometric interpretation of the mixed-norm problem
(43): the constraints (43b) and (43c) define the ellipsoid Ωf

centered at G0 and the ellipsoid Ωz centered at the origin
O, respectively. Lying at the boundary of Ωf , the optimal
solution Gr,off gives the shortest distance measured by the
objective function (43a) from the origin to the intersection
set Ωf

⋂
Ωz. With γ2

z = γ2
z,min, the ellipsoid Ωz becomes

Ωz,min (Gmin) in green which intersects with the ellipsoid Ωf

at a single point Gmin. At the boundary of Ωf , G1 gives the
shortest distance from the origin to the ellipsoid Ωf . The
ellipsoids Ωz,1 (G1) in blue and Ωz (Gr,off) in red represent
the ellipsoids Ωz with G1 and Gr,off lying at the boundary,
respectively. (For interpretation of the colour in all figures
of this paper, the reader is referred to the web version.)

case bias if γ2
s ≤ λmax

(
Ē
(
Ts (Gn) T T

s (Gn)
))

(s = f, z).

Algorithm 2 Data-driven robust RH fault estimation

1) Complete the steps 1-3 in Algorithm 1; compute

Mu
i , My

i , and Mf
i according to (12) and (34).

2) Tune γ2
f ∈

[
γ2
f,min, 1

)
and γ2

z ∈
[
γ2
z,min,∞

)
ac-

cording to Table ??, where γ2
f,min and γ2

z,min are

obtained from the optimization problems (46) and
(47) respectively.

3) Solve the problem (43) to compute the robust RH
fault estimator Gr,off .

6 Data-driven robust receding horizon fault es-
timation with online optimization

Different from regarding the online I/O data as unknown
in Algorithm 2, this section exploits the available online
data in an online mixed-norm problem. This can further
reduce the estimation errors, at the expense of increased
computational burden.

6.1 Online mixed-norm problem

With the notation

β̄k,L = M̄z
Lzk,L, (49)

we divide β̄k,L into L row blocks as in

β̄k,L =
[
βT
k,1 β

T
k,2 · · · βT

k,L

]T
, (50)

with βk,i ∈ RN . Then the term GĒidM̄z
Lzk,L in (41) can

be rewritten as

GĒidM̄z
Lzk,L = GĒidβ̄k,L

=G


Eidβk,1

Eidβk,2
...

Eidβk,L

 = G


βT
k,1 ⊗ Iny
βT
k,2 ⊗ Iny

...

βT
k,L ⊗ Iny


︸ ︷︷ ︸

Γk,L

vec (Eid) (51)

according to the property of Kronecker product (Brewer,
1978). Using (51), the estimation error in (41) becomes

∆f(k − τ) = Tf (G) fζk−τ,L−τ − GΓk,Lvec (Eid) + Gek,L.

(52)
Then the statistics of vec (Eid), i.e.,

E
(

vec (Eid) vec (Eid)
T
)

= IN ⊗ Σe,

can be exploited to evaluate the fault estimation error
variance. Therefore, we formulate the following opti-
mization problem similarly to (42):

Gr,on = arg min
G

tr
(
GΣe,LGT + GΓk,L (IN ⊗ Σe) ΓT

k,LGT
)

s.t. Ē
(
Tf (G) T T

f (G)
)
≤ γ2

fI

(53)
with the user-defined parameter γf . The constraint in
the above optimization problem (53) can be explicitly
written as (43b). The optimization problem (53) has to
be solved at each time instant to update the robust fault
estimator Gr,on because Γk,L in the cost function is de-
termined by the online I/O data according to (49)-(51).

6.2 Parameter tuning using geometric interpretation

Since the online mixed-norm problem (53) has the struc-
ture similar to that of the offline mixed-norm problem
(43), the performance trade-offs by tuning γf in (53)
are also similar to that explained in Table ??. The pro-
posed data-driven robust fault estimation with online
optimization is summarized in Algorithm 3. To reduce
the computational burden, the problem (53) is imple-
mented only if the estimation bias of the offline designed
fault estimator is larger than a user-defined threshold α,
as in Step 2 of Algorithm 3.

The offline designed fault estimator Gr,off from Algo-
rithm 2 can be used as a benchmark for tuning γ2

f in Step
2.2 of Algorithm 3, e.g., compared to Gr,off , the online
optimization (53) achieves smaller averaged worst-case

bias if γ2
f ≤ λmax

(
Ē
(
Tf (Gr,off) T T

f (Gr,off)
))

.
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Algorithm 3 Data-driven robust RH fault estimation
with online optimization

1) Follow Algorithm 2 to compute the offline de-
signed fault estimator Gr,off .

2) If λmin

(
Ē
(
Tz (Gr,off) T T

z (Gr,off)
))
‖zk,L‖22 > α (α

is a user-defined threshold), the online optimiza-
tion in the following steps is implemented; other-
wise, the offline designed estimator Gr,off is used.
2.1) Compute Γk,L according to (49)-(51).

2.2) Tune γ2
f ∈

[
γ2
f,min, 1

)
similarly to Step 2 of

Algorithm 2, with γ2
f,min defined in (46).

2.3) Solve the problem (53) to compute the robust
RH fault estimator Gr,on.

7 Simulation studies

Consider a continuous-time linearized vertical take-off
and landing (VTOL) aircraft model (Dong and Ver-
haegen, 2012). With a sampling rate of 0.5 seconds, the
discrete-time model (2) is obtained, withD = 0 and F =
I4. The process and measurement noises, w(k) and v(k),
are zero mean white noises, respectively with covariances
ofQ = 0.16I4 andR = 0.64I4. Since the open-loop plant
is unstable, the stabilizing output feedback controller
u(k) = Kcy(k) + η(k) in Dong and Verhaegen (2012) is
used, where η(k) is the reference signal. In the identifica-
tion experiment, the reference signal η(k) is zero-mean
white noise with the covariance diag (1, 1), which ensures
persistent excitation. We collect N = 1000 data samples
from the identification experiment. In the identification
algorithm, the past horizon is selected as p = 10 by fol-
lowing Remark 4. The considered fault cases include:
1) actuator faults: E = B, G = D; 2) sensor faults:

E = 04×2, G = [ 1 0 0 0
0 1 0 0 ]

T
. The fault signals in both fault

cases are the same:

f(k) =


[

0 0
]T
, 0 ≤ k ≤ 50,[

sin (0.1πk) 1
]T
, k > 50.

We will compare the following fault estimation methods,
all of which select the estimation horizon length L = 30:

• Alg0: the RH fault estimator using accurate MPs, de-
scribed in Section 4.
• DONG: the method in Dong and Verhaegen (2012).
• Alg1: the fault estimator Gn obtained in Algorithm 1;
• Alg2: the fault estimator Gr,off obtained in Al-

gorithm 2; in Step 3 of Algorithm 2, we select

γ2
f = λmax

(
Ē
(
Tf (Gn) T T

f (Gn)
))

, and

γ2
z = 0.5

(
γ2
z,min + γ2

z,1

)
. (54)

• Alg3: the fault estimator Gr,on obtained in Algorithm

3; in Step 2 of Algorithm 3, we select α = 300 as
the threshold to determine whether or not the online
optimization should be implemented; γ2

f is set to the
same value as in Alg2.

In order to show the necessity of compensating for the
identification errors, we make the identification-error-
effect term Tz (G) zk,L in (41) significantly large by set-
ting η(k) = 15. Fault estimates from the above five
algorithms are illustrated in Fig. 2, and the distribu-
tions of their fault estimation errors are shown in Fig.
3. By using accurate MPs, Alg0 achieves unbiased fault
estimation in both fault scenarios. Note that DONG
cannot be directly applied to sensor faults in the un-
stable open-loop VTOL model (Dong and Verhaegen,
2012), hence it is not included in Fig. 2 and 3(b) for
sensor faults. Because of neglecting the effect of identi-
fication errors, both Alg1 and DONG yield estimation
biases even larger than the amplitude of true faults. In
comparison, Alg2 obtains its robustness to identifica-
tion error by solving an offline mixed-norm problem, as
shown in Fig. 3(a). However, the poor performance of
Alg2 in our sensor fault case (Fig. 3(b)) shows the lim-
itation of neglecting the online availability of I/O data
in the offline mixed-norm problem. Compared to Alg2,
Alg3 significantly reduces estimation bias, as shown in
Fig. 3(b), by formulating an online mixed-norm problem
to exploit online I/O data. This performance improve-
ment is achieved at the cost of higher online computa-
tional burden. When implemented with YALMIP (Lof-
berg, 2004) in the MATLAB2011b environment, on a
computer with a 3.4 GHz processor and 8 GB RAM, the
peak computational time per sample of Alg3 is 2.05s for
the estimation horizon length L = 30, while that of Alg2
is 3.17 × 10−5s. We will investigate the computational
efficiency of Alg3 in future work.
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Fig. 2. True fault signal and fault estimates from different
algorithms when η(k) = 15.

To illustrate the performance trade-offs of Alg2, we set
γ2
z as in (54) and tune γ2

f under the condition of different

reference signals η(k). Fig. 4 shows how the fault esti-
mation bias, error variance and root mean square error
(RMSE) vary with γ2

f , which can be explained as fol-
lows using Table ??. According to the fault estimation
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Fig. 3. Distribution of fault estimation errors when
η(k) = 15. Circles: 1000 estimation errors based on
1000 online I/O data samples. Ellipses: the 3σ-contour
of the approximated two-dimensional Gaussian distribu-
tion of the 1000 estimation errors, i.e., the contour at[
f̂(k)− f(k)

]T
cov−1

(
f̂(k)

) [
f̂(k)− f(k)

]
= 3.

error analysis in (41), the fault estimation bias is re-

lated to both Tf (Gr,off) fζk−τ,L−τ and Tz (Gr,off) zk,L. For

η(k) = 0 or η(k) = 1, the online I/O data zk,L have small
amplitude, thus the total estimation bias is dominated

by the bias related to Tf (Gr,off) fζk−τ,L−τ which mono-

tonically increases with γ2
f according to the third row of

Table ??. This explains the fault estimation bias curves
for η(k) = 0 and η(k) = 1 in Fig. 4. For η(k) = 2, the on-
line I/O data zk,L have relatively large amplitudes, hence
for relatively small values of γ2

f the total estimation bias

is dominated by the bias related to Tz (Gr,off) zk,L which
monotonically decreases with γ2

f , and for relatively large

values of γ2
f the total estimation bias is dominated by the

bias related to Tf (Gr,off) fζk−τ,L−τ which monotonically

increases with γ2
f , according to the third row of Table

??. This explains the fault estimation bias curve for
η(k) = 2 in Fig. 4. The monotonic decrease of the fault
estimation error variances with γ2

f can be directly ex-
plained with the third row of Table ??. As the objective
function of the optimization problem (43), the fault es-

timation error variance tr
(
Gr,offΣe,LGT

r,off

)
for different

reference signals η(k) is the same because it does not
depend on the reference signal η(k). Combining the in-
crease of fault estimation bias and the decrease of fault
estimation error variance with γ2

f , there exist the optimal

γ2
f,∗ ∈

(
γ2
f,min, 1

)
such that the RMSE achieves its min-

imal value, as can be seen in Fig. 4. It is also shown that
the minimal RMSE is achieved at a larger value of γ2

f,∗
when the amplitude of η(k) increases, because the online
I/O data have larger amplitudes with larger η(k), thus
the decrease of the bias related to Tz (Gr,off) zk,L domi-
nates the fault estimation bias. With the above insights,
we can anticipate how the estimation performance of
Alg2 varies with different γ2

z for a fixed γ2
f , as well as

the performance trade-offs of Alg3. Their performance
curves are not plotted due to the space limitation.

The simulation results with different lengths L of the es-
timation horizon (omitted for the sake of brevity) show
that the fault estimation bias and variance of Alg0, Alg2,
and Alg3 decrease when increasing length L of the esti-
mation horizon. Proof of this observation can be derived
for Alg0 using accurate MPs by following the analysis
given at the end of Section 3. A similar analysis can be
also applied to Alg2 and Alg3, but a strict analytical
proof directly applied to the mixed norm problems (42)
and (53) is difficult and left for future research.
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Fig. 4. Estimation performance of Alg2 when tuning γ2
f under

different reference signal η(k)

8 Conclusions

This paper has investigated data-driven fault estima-
tion and its robustness against stochastic identification
errors. First, we proposed an RH fault estimator that
can be parameterized with the predictor MPs. Its con-
dition for unbiasedness generalizes that of a recently re-
ported data-driven fault estimation method. An imme-
diate benefit is that our proposed method can be applied
to sensor faults of an unstable open-loop plant which
could not be directly addressed previously. Offline and
online mixed-norm problems were formulated to enhance
robustness against identification errors, depending upon
whether the online optimization is required. Based on
geometric interpretations of the mixed-norm problems,
systematic methods were given to tune the user-defined
parameters therein. Comparisons using a simulated air-
craft model illustrated the advantages and effectiveness
of our proposed method.

References

Alcala, C.F., Qin, S.J., 2009. Reconstruction-based con-
tribution for process monitoring. Automatica 45,
1593–1600.

Boyd, S., Vandenberghe, L., 2004. Convex Optimization.
Cambridge University Press, New York.

Brewer, J., 1978. Kronecker products and matrix cal-
culus in system theory. IEEE Transactions on Auto-
matic Control 25, 772–781.

11



Chen, J., Patton, R., 1999. Robust Model-Based Fault
Diagnosis for Dynamic Systems. Kluwer Academic,
Norwell, MA.

Chiuso, A., 2007. The role of vector autoregressive mod-
eling in predictor based subspace identification. Au-
tomatica 43, 1034–1048.

Ding, S.X., 2013. Model-Based Fault Diagnosis Tech-
niques: Design Scheme, Algorithms, and Tools. 2 ed.,
Springer-Verlag, London.

Ding, S.X., 2014. Data-driven design of monitoring and
diagnosis systems for dynamic processes: a review of
subspace technique based schemes and some recent
results. Journal of Process Control 24, 431–449.

Dong, J., Verhaegen, M., 2012. Identification of fault
estimation filter from I/O data for systems with stable
inversion. IEEE Transactions on Automatic Control
57, 1347–1361.

Dong, J., Verhaegen, M., Gustafsson, F., 2012a. Robust
fault detection with statistical uncertainty in identi-
fied parameters. IEEE Transactions on Signal Pro-
cessing 60, 5064–5076.

Dong, J., Verhaegen, M., Gustafsson, F., 2012b. Robust
fault isolation with statistical uncertainty in identified
parameters. IEEE Transactions on Signal Processing
60, 5556–5561.

Gillijns, S., 2007. Kalman Filtering Techniques for
System Inversion and Data Assimilation. Ph.D. thesis.
Katholieke University Leuven.

Kailath, T., Sayed, A., Hassibi, B., 2000. Linear Esti-
mation. Prentice-Hall, Englewood Cliffs, NJ.

Kirtikar, S., Palanthandalam-Madapusi, H., Zattoni, E.,
Bernstein, D.S., 2011. l-delay input and initial-state
reconstruction for discrete-time linear systems. Cir-
cuits, Systems, and Signal Processing 30, 233–262.

Lofberg, J., 2004. YALMIP: a toolbox for modeling and
optimization in matlab, in: Proc. 2004 IEEE Interna-
tional Symposium on Computer Aided Control Sys-
tems Design, pp. 284–289.

Manuja, S., Narasimhan, S., Patwardhan, S.C., 2009.
Unknown input modeling and robust fault diagnosis
using black box observers. Journal of Process Control
19, 25–37.

Massey, J.L., Sain, M.K., 1968. Inverses of linear se-
quential circuits. IEEE Transactions on Automatic
Control 17, 330–337.

Patwardhan, S.C., Shah, S.L., 2005. From data to diag-
nosis and control using generalized orthonormal basis
filters. Part I: development of state observers. Journal
of Process Control 15, 819–835.

Qin, S.J., Li, W., 2001. Detection and identification of
faulty sensors in dynamic processes. AIChE Journal
47, 1581–1593.

Raimondo, D.M., Braatz, R.D., Scott, J.K., 2013. Active
fault diagnosis using moving horizon input design, in:
Proc. European Control Conference, Zurich, Switzer-
land. pp. 3131–3136.

Russel, E.L., Chiang, L., Braatz, R.D., 2000. Data-
Driven Techniques for Fault Detection and Diagnosis
in Chemical Processes. Springer-Verlag, London.

Simani, S., Fantuzzi, S., Patton, R., 2003. Model-Based
Fault Diagnosis in Dynamic Systems Using Identifi-
cation Techniques. Springer-Verlag, London.

van der Veen, G., van Wingerden, J.W., Bergamasco,
M., Lovera, M., Verhaegen, M., 2012. Closed-loop
subspace identification methods: an overview. IET
Control Theory and Applications 7, 1339–1358.

Wan, Y., Keviczky, T., Verhaegen, M., 2014. Moving
horizon least-squares input estimation for linear
discrete-time stochastic systems, in: Proc. IFAC
World Congress, Cape Town, South Africa. pp. 3483–
3488.

Zhang, Z., Jaimoukha, I.M., 2014. On-line fault detec-
tion and isolation for linear discrete-time uncertain
systems. Automatica 50, 513–518.

Zhou, K., Doyle, J., Glover, K., 1996. Robust and Op-
timal Control. Prentice Hall, Upper Saddle River,
New Jersey.

A Lemmas for Theorem 5

Lemma 10 Define xe(0) ∈ Rn, fe(i) ∈ Rnf , and
re(i) ∈ Rny (i ≥ 0) as the initial state, input and output

signal of the fault subsystem (Φ, Ẽ, C,G), respectively.
There exists a non-zero initial state xe(0) such that
re(0) = re(1) = · · · = re(L) = 0 for all L ≥ ν + τ , if
and only if

(i) Oτxe(0) = 0;
(ii) the system (A.1) is unobservable;

xe(k + 1) =
[
Φ− Ẽ

(
Hf
τ

)−
CΦτ

]
︸ ︷︷ ︸

Kd

xe(k)

re(k) =
[
I −Hf

τ

(
Hf
τ

)−]
CΦτxe(k)

(A.1)

(iii) the inputs {fe(i)} take the form

fe(i) = −
(
Hf
τ

)−
CΦτKi

dxe(0). (A.2)

In Lemma 10, re(0) = · · · = re(τ − 1) = 0 is en-
sured because of the condition (i) and the zero Markov

matrices Hf
0 , H

f
1 , · · · , H

f
τ−1 according to Assumption 2,

while re(τ) = · · · = re(L) = 0 is ensured by the condi-
tions (ii) and (iii). Lemma 10 can be proved by slightly
modifying Lemmas A.1 and A.2 in Kirtikar et al. (2011).

Lemma 10 shows that perfect reconstruction of system
inputs {fe(i)} from system outputs {re(i)} is impos-
sible if the unobservable input signal (A.2) is non-zero.
Next, we will investigate the link between the unob-
servable input signal (A.2) and the system property of

(Φ, Ẽ, C,G).

By setting i = 0, (A.2) becomes

fe(0) = −
(
Hf
τ

)−
CΦτxe(0). (A.3)
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Then, according to the condition (i) and the unobserv-
ability of the system (A.1), there must exist a scalar λ
and a non-zero xe(0) such that (Zhou et al., 1996)[

Kd−λI
Oτ[

I−Hfτ (Hfτ )
−]
CΦτ

]
xe(0) =

[
Φ−λI Ẽ
Oτ 0

CΦτ Hfτ

][
xe(0)
fe(0)

]
=
[

Φ−λI Ẽ

Oτ+1 Hf
τ

][
xe(0)
fe(0)

]
= 0,

(A.4)

where Hf
τ defined in (23) equals to

[
0
Hfτ

]
because

Hf
0 , H

f
1 , · · · , H

f
τ−1 are zero matrices according to As-

sumption 2. With (A.3) and (Kd − λI)xe(0) = 0 in
(A.4), we can rewrite fe(i) in (A.2) as

fe(i) = λife(0). (A.5)

The above analysis indicates that the unobservable in-
puts {fe(i) = λife(0)} are determined by the invariant

zero λ of (Φ, Ẽ,Oτ+1,H
f
τ ), as shown below:

Lemma 11 Considering the non-zero initial state xe(0)
in Lemma 10, there are two types of the invariant zeros
λ of the fault subsystem (Φ, Ẽ,Oτ+1,H

f
τ ) in (A.4): 1) λ

is an unobservable mode, then (A.4) implies fe(0) = 0,
thus the input signal {fe(i) = λife(0)} is constantly zero;
2) λ is a transmission zero, then fe(0) 6= 0, thus the
unobservable input signal {fe(i) = λife(0)} is non-zero.

Lemma 11 directly extends Lemmas 1 and 2 in Wan et al.
(2014) which considers only the case τ = 0.

B Proof of Theorem 5

A solution f̂xk−τ,L−τ to the problem (19) satisfies

ΨT
L,τΣ−1

e,LΨL,τ f̂
x
k−τ,L−τ = ΨT

L,τΣ−1
e,Lrk,L. (B.1)

Let ∆fxk−τ,L−τ = f̂xk−τ,L−τ − fxk−τ,L−τ denote the esti-

mation error. By substituting (18) into (B.1), we have

ΨT
L,τΣ−1

e,LΨL,τ∆fxk−τ,L−τ = ΨT
LΣ−1

e,Lek,L,

which implies ΨT
L,τΣ−1

e,LΨL,τE
(

∆fxk−τ,L−τ

)
= 0 by

taking expectations on both sides. Therefore, the un-
biasedness condition of the estimate in (22) reduces to
the analysis of the linear equation

ΨL,τE
(
∆fxk−τ,L−τ

)
= 0 (B.2)

since N
(

ΨT
L,τΣ−1

e,LΨL,τ

)
= N (ΨL,τ ).

The rest of the proof follows the intuitive arguments
below. According to Lemma 10, (A.5), and the definition
of fxk−τ,L−τ in (18), there are three scenarios:

1) When (Φ, Ẽ,Oτ+1,H
f
τ ) has no invariant zeros,

the non-zero initial state xe(0) in Lemma 10 does
not exist according to (A.4), thus (B.2) implies

E
(

∆fxk−τ,L−τ

)
= 0, i.e., unbiased fault estimation.

2) When (Φ, Ẽ,Oτ+1,H
f
τ ) has invariant zeros, (B.2)

implies that for each invariant zero λ, the expected

error of the τ -delay fault estimate f̂(k − τ) is

E (∆f(k − τ)) = λL−τ−1E (∆f(k0)) (B.3)

in the estimation horizon [k0, k] (k0 = k − L+ 1).

2.1) If all the invariant zeros of (Φ, Ẽ,Oτ+1,H
f
τ )

correspond to unobservable modes, it follows
from the case 1) in Lemma 11 that the ex-
pected estimation error (B.3) is zero because
E (∆f(k0)) = 0.

2.2) If transmission zeros exist but are all stable,
i.e., |λ| < 1, it follows from the case 2) in
Lemma 11 that E (∆f(k0)) 6= 0 and the ex-
pected estimation error (B.3) asymptotically
reduced to zero as L goes to infinity.

The scenarios 1) and 2.1) correspond to the case (i) of
Theorem 5, and the scenario 2.2) corresponds to the case
(ii) of Theorem 5.

C Proof of Theorem 8

Split Tf
L,τ into two blocks as

[
T̆f
L,τ T̃f

L,τ

]
, with T̆f

L,τ

consisting of the first L− τ − 1 block-columns of Tf
L,τ ,

and T̃f
L,τ consisting of the last block-column of Tf

L,τ .
With these notations, unbiased fault estimation can be

proved by showing that T̃f
L,τE(∆f(k − τ)) = 0 because

T̃f
L,τ has full column rank according to Assumption 2.

According to (26), the two expressions

ε ∈R
([
OL T̆f

L,τ

])⋂
R
(
T̃f
L,τ

)
, (C.1)

ε ∈R
([

Ho
L,m T̆f

L,τ

])⋂
R
(
T̃f
L,τ

)
. (C.2)

are equivalent. Since the two sufficient conditions for
(asymptotic) unbiasedness in Theorem 5 imply ε = 0
and ε → 0 (L → ∞) for (C.1), it then follows from
the equivalence between (C.1) and (C.2) that the suf-
ficient conditions in Theorem 5 also imply ε = 0 and

ε → 0 (L → ∞) for (C.2), or equivalently, R
(
T̃f
L,τ

)
=

{0} and R
(
T̃f
L,τ

)
→ {0} (L → ∞). Therefore we

can conclude that the sufficient conditions in Theorem
5 imply (asymptotically) unbiased fault estimation for
(C.2). Similarly, we can prove the necessary condition
for the (asymptotically) unbiased fault estimation.
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D Computation of Ē
(
Ts (G) T T

s (G)
)

By dividing M̄Υ in (38) into L row blocks as

M̄Υ =
[

MT
Υ,1 MT

Υ,2 · · · MT
Υ,L

]T
, (D.1)

with MΥ,i ∈ Rnf×(m·nu+(L−τ)nf ), we define PΥ as

PΥ =


tr(MΥ,1MT

Υ,1) tr(MΥ,1MT
Υ,2) ··· tr(MΥ,1MT

Υ,L)
tr(MΥ,2MT

Υ,1) tr(MΥ,2MT
Υ,2) ··· tr(MΥ,2MT

Υ,L)
...

...
. . .

...
tr(MΥ,LMT

Υ,1) tr(MΥ,LMT
Υ,2) ··· tr(MΥ,LMT

Υ,L)

 .
(D.2)

Pz is defined similarly to (D.2), by dividing M̄z
L in (39)

into L row blocks as in (D.1). Then,

Ē
(
Tf (G) T T

f (G)
)

=
[
G Inf

] [ Πf −Υ̂L,τ

−Υ̂T
L,τ Inf

][
GT

IT
nf

]
,

(D.3)

Ē
(
Tz (G) T T

z (G)
)

= GΠzGT (D.4)

with

Πf = Υ̂L,τ Υ̂T
L,τ + Ē

(
ĒidM̄ΥM̄T

ΥĒT
id

)
= Υ̂L,τ Υ̂T

L,τ + PΥ ⊗ Σe,
(D.5)

Πz = Ē
(
ĒidM̄z

L(M̄z
L)TĒT

id

)
= Pz ⊗ Σe. (D.6)

14


