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SUMMARY

This paper presents a real-time nonlinear moving horizon observer with pre-estimation and its application to

aircraft sensor fault detection and estimation. A moving horizon observer determines the state estimates

by minimizing the output estimation errors online, considering a finite sequence of current and past

measured data and the available system model. To achieve real-time implementability of such an online

optimization based observer, two particular strategies are adopted. First, a pre-estimating observer is

embedded to compensate for model uncertainties, so that the calculation of disturbance estimates in a

standard moving horizon observer can be avoided without losing much estimation performance. This

strategy significantly reduces the online computational complexity. Second, a real-time iteration scheme

is proposed by performing only one iteration of sequential quadratic programming with local Gauss-Newton

approximation to the nonlinear optimization problem. Since existing stability analyses of real-time moving

horizon observers cannot address the incorporation of the pre-estimating observer, a new stability analysis

is performed in the presence of bounded disturbances and noises. Using a nonlinear passenger aircraft

benchmark simulator, the simulation results show that the proposed approach achieves a good compromise

between estimation performance and computational complexity, compared to extended Kalman filtering and

two other moving horizon observers. Copyright c© 2010 John Wiley & Sons, Ltd.
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ii WAN AND KEVICZKY

Model based fault detection (FD) and estimation is recognized as a promising technique to facilitate

the automated handling of abnormal events, e.g., in aerospace applications [1, 2]. To deal with a

wide range of operating points, it is necessary to adopt nonlinear observer or filtering approaches

to detect faults and provide reliable state or fault estimates. Based on the types of adopted models,

these approaches can be classified as (i) a direct nonlinear model-based design including nonlinear

geometric observers [3], high-gain observers [4, 5], sliding mode observers [6, 7], and nonlinear

Kalman filtering [8–11]; and (ii) a linear parameter varying (LPV) model-based design using a LPV

approximation to the nonlinear system [12–15]. In these approaches, except the nonlinear Kalman

filtering, the observer or filter parameters are designed offline. Their design methodologies are often

restricted to certain class of nonlinear systems, or not applicable to high nonlinearity.

In contrast to the above observers or filters with fixed parameters designed offline, the moving

horizon observer (MHO) is based on online optimization [16, 17]. It is also referred to as moving

horizon estimation when inequality constraints are incorporated [18,19]. The MHO estimates states

and process disturbances by minimizing the difference between its estimates and data samples

within a finite past horizon. The extended Kalman filter (EKF) can be viewed as a special form

of MHO with its moving horizon length set to 1. Compared to EKF, the MHO achieves better

performance in terms of estimation accuracy and robustness to initial errors due to utilizing a

batch of past measured samples at each time instant [20]. It relies on numerical optimization as

a systematic approach to address various nonlinearities and constraints [21,22]. Moreover, it is able

to cope with non-uniform observability, time-varying systems, and unknown parameters, which

are often troublesome for conventional observer designs [23–25]. Recently, the MHO has received

attention in different aerospace applications [26–30].

Despite its benefits, the computational burden of online optimization in MHO is a critical

challenge that limits its applicability in real time, especially for fast nonlinear dynamic systems such

as in aircraft applications. To speedup computation, many efficient computation strategies have been

reported in the literature [21]. In [31], a structure-exploiting Riccati-based approach was proposed

by following the similar approach in model predictive control, so that the computational complexity

is linear with respect to the horizon length. In [32], the computation is accelerated by exploiting

sensitivity analysis of a background MHO solution. Even with such efficient algorithms, in order to

be compliant with a short sampling interval, only a limited number of iterations are allowed, thus the

optimization problem at each time instant cannot be fully solved. As a consequence, the established

stability analysis for MHOs with fully solved optimizations in [18, 33] cannot be applied to such

real-time iteration schemes. For real-time MHO using gradient, conjugate gradient, and Newton

methods, different types of stability analyses have been proposed in [22, 34].

Motivated by the idea of pre-stabilizing model predictive control, a new linear MHO was

proposed in [35,36] by incorporating a pre-estimating observer for forward prediction. While model
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uncertainties in forward prediction are compensated for by disturbance estimates in a standard MHO

formulation [18], this is achieved by feedback injection from output measurements in an MHO

with pre-estimation (MHO-PE). By avoiding the explicit calculation of disturbance estimates, the

MHO-PE has a computational complexity that scales significantly better with respect to the horizon

length and the disturbance dimensions, compared to the standard MHO. This idea has been recently

extended to nonlinear systems in [37, 38].

The above results on the MHO-PE all make use of exact solutions of the underlying optimization

problem which might not be computed within a short sampling interval. Hence their real-time

applicability is significantly limited. To address this issue, a real-time iteration scheme is proposed

and analyzed in this paper for the nonlinear MHO-PE. It is based on sequential quadratic

programming (SQP) with local Gauss-Newton approximations. During each sampling interval, only

one SQP iteration is performed so that the computational cost per sample is minimized and fixed

for real-time computation. The stability of estimation errors is analyzed by deriving explicit error

dynamics and an upper-bounding sequence on the estimation errors. This leads to useful insights

about parameter tuning in the MHO-PE for trade-offs between stability and performance. The

proposed real-time MHO-PE scheme is applied to aircraft angle-of-attack (AOA) fault detection

and estimation by using an aerodynamic-independent model. As shown in simulation results from

a nonlinear passenger aircraft simulator [1], the proposed method achieves a good compromise

between estimation performance and computational complexity, compared to two other MHO

formulations.

This paper is organized as follows. In Section 2, three MHO formulations and their associated

real-time computation issues are briefly reviewed. Our real-time iteration scheme for the nonlinear

MHO-PE and its stability is proposed in Section 3 and analyzed in Section 4, respectively. In

Section 5, a comparative simulation study using a nonlinear passenger aircraft benchmark simulator

is presented.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider a nonlinear discrete-time system

xk+1 = f(xk, um,k) + wk

ym,k = h(xk) + vk,
(1)

where xk ∈ Rnx is the state, um,k ∈ Rnu and ym,k ∈ Rny are the measured system input and output,

wk and vk are the process noise and measurement noise. For the above system model (1), the

following assumptions are made:
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Assumption 1. The discrete-time state x, system input u, process disturbance w, and measurement

noise v belong to bounded sets X ⊂ Rnx , U ⊂ Rnu W ⊂ Rnw , and V ⊂ Rnv , respectively.

Assumption 2. The nonlinear functions f(x, u) and h(x) are Lipschitz with respect to x ∈ X and

u ∈ U.

In order to monitor the sensor that measures one entry of the state vector xk, the system state is

first estimated from the available system input um,k and output ym,k. Then the difference between

the sensor measurement and its associated estimate is used to indicate the occurrence of sensor

faults. This paper aims at proposing a real-time iteration scheme for the nonlinear MHO-PE to

account for the hard real-time constraint, and illustrating its application to aircraft AOA sensor fault

detection and estimation.

2.1. Preliminaries on nonlinear moving horizon observer

Next, three formulations of nonlinear MHO and the existing results on their real-time computation

strategies are briefly reviewed.

For a moving horizon [k −N, k] at each time instant k, given the a priori estimate

x̄k−N |k for the initial state xk−N as well as the available input and output data Ik =

{ym,k−N , · · · , ym,k, um,k−N , · · · , um,k−1}, the MHO estimates the state sequence xk−N , · · · , xk
by solving a nonlinear least-squares (NLS) problem in the form [18]

min
x̂i|k,ŵi|k

∥∥x̂k−N |k − x̄k−N |k∥∥2

M
+

k−1∑
i=k−N

∥∥ŵi|k∥∥2

Q
+

k∑
i=k−N

∥∥ym,i − ŷi|k∥∥2

W

s.t. x̂i+1|k = f(x̂i|k, um,i) + ŵi|k, i = k −N, · · · , k − 1,

ŷi|k = h(x̂i|k), i = k −N, · · · , k,

(2)

where x̂i|k and ŷi|k represent the estimated state and output for xi and yi using the information

Ik at time instant k. The first term of the objective function in (2) is the so-called arrival cost to

account for data before the current estimation horizon. The positive definite matrices M , Q, and

W are tuning parameters for trade-offs between different components of the objective function. At

each time instant k, a typical MHO algorithm involves three steps:

(i) Update and initialization using estimates {x̂?i|k−1, ŵ
?
i|k−1} obtained over the previous

horizon [k −N − 1, k − 1]. The a priori estimate x̄k−N |k in the arrival-cost term is

updated as x̄k−N |k = x̂?k−N |k−1 by following [33]. The initial guess of the state x̂k−N |k

and the disturbance sequence ŵk−N |k, · · · , ŵk−1|k, ŵk|k is assigned to be x̂?k−N |k−1 and

ŵ?k−N |k−1, · · · , ŵ
?
k−1|k−1, 0, respectively.

(ii) Optimization. By eliminating the state variables x̂k−N+1|k, · · · , x̂k|k using the dynamic

equations in the constraints of (2), the problem (2) turns into a condensed form

Jk(x̂k−N |k, ŵ
k−N
k−1|k) with respect to the state x̂k−N |k and the disturbance sequence ŵk−Nk−1|k =
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[
ŵT
k−N |k ŵT

k−N+1|k · · · ŵT
k−1|k

]T
. Starting from the above initial guess, the numerical

optimization algorithm iteratively computes the estimates x̂?k−N |k and ŵ?k−N |k, · · · , ŵ
?
k−1|k.

(iii) Forward prediction. The remaining state estimates are computed by forward prediction from

x̂?k−N |k using x̂?i+1|k = f(x̂?i|k, um,i) + w?i|k, i = k −N, · · · , k − 1.

The above step (i) is computationally cheap. Note that there are other computationally demanding

alternatives such as in [19] for recursively updating the weighting matrix M , which are not suitable

for the fast real-time application in this paper. In Step (ii), the computational complexity of solving

the KKT system associated with the condensed formulation is O(N3(nx + nw)3).

In [22, 33], another MHO formulation is also adopted without estimating the disturbances {wi} :

min
x̂i|k

Jk(x̂k−N |k) =
∥∥x̂k−N |k − x̄k−N |k∥∥2

M
+

k∑
i=k−N

∥∥ym,i − ŷi|k∥∥2

W

s.t. x̂i+1|k = f(x̂i|k, um,i), i = k −N, · · · , k − 1,

ŷi|k = h(x̂i|k), i = k −N, · · · , k.

(3)

The algorithm for this MHO formulation (3) still follows the same three steps mentioned above,

with two main differences. The first difference is that the condensed problem derived from (3)

has only decision variable x̂k−N |k, after eliminating x̂k−N+1|k, · · · , x̂k|k. Thus its computational

complexity in solving the associated KKT system is O(n3
x), which does not depend on the horizon

length N . Despite this computational advantage, its estimation performance can be worse than the

MHO formulation (2), because its estimation errors accumulate in the forward prediction x̂i+1|k =

f(x̂i|k, um,i) adopted in (3), especially when the dynamics x̂i+1|k = f(x̂i|k, um,i) is unstable and

the horizon length N is large.

By introducing a nonlinear Luenberger observer into the MHO formulation (3), the MHO with

pre-estimation (MHO-PE) was first proposed for linear systems [35, 36], and has been recently

extended to nonlinear systems in [37, 38]:

min
x̂i|k

Jk(x̂k−N |k) =
∥∥x̂k−N |k − x̄k−N |k∥∥2

M
+

k∑
i=k−N

∥∥ym,i − ŷi|k∥∥2

W

s.t. x̂i+1|k = f(x̂i|k, um,i) + L(ym,i − ŷi|k), i = k −N, · · · , k − 1,

ŷi|k = h(x̂i|k), i = k −N, · · · , k.

(4)

On one hand, the pre-estimating Luenberger observer stabilizes the forward prediction by

introducing feedback from output measurements, thus reducing the error accumulation in the

forward prediction. On the other hand, the observer gain L can be regarded as a parsimonious

parameterization of the estimated disturbance sequence ŵk−N |k, · · · , ŵk−1|k in the MHO

formulation (2), i.e., ŵi|k = L(yi − ŷi|k), i = k −N, · · · , k − 1. Therefore, it can be expected that

the estimation performance of the MHO formulation (4) can better approximate the formulation
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(2) than the formulation (3). The observer gain L are designed offline to stabilize the observer error

dynamics by following any nonlinear Luenberger observer design procedure, e.g., [39]. By doing so,

the MHO-PE formulation (4) retains the same computational advantage of the formulation (3), i.e.,

its computational complexity is much less dependent upon the horizon length than the formulation

(2).

In real-time applications, each involved optimization problem per sample in MHO may not be

full solved within a restricted sampling interval. Instead, the number of iterations per sample has to

be fixed, which achieves real-time computation at the cost of losing optimality. As a consequence,

the established stability analysis for MHOs with fully solved optimizations in [18, 33] cannot be

applied to such real-time iteration scheme. Existing stability results for real-time MHOs with fixed

number of iterations are limited to the formulation (3), see [22, 34, 40].

Remark 1

The condensed form is adopted in this paper for the three MHO formulations (2)–(4) by eliminating

state variables via forward prediction. Alternatively, all state variables can be kept as optimization

variables, which is known as the multiple shooting method. Such multiple shooting has been

applied in [31] and [34] to solve (2) and (3), respectively. This results in a sparsely structured

KKT system which is numerically better conditioned than the condensed form [34]. The multiple

shooting method can be also applied to the MHO-PE (4), with the benefit of reducing computational

complexity by avoiding explicit disturbance estimation compared to (2). However, the stability

analysis of MHO-PE in the context of multiple shooting cannot easily follow what we have

performed for the condensed MHO-PE in Section 4, which remains an open-problem for future

research.

3. REAL-TIME NONLINEAR MOVING HORIZON OBSERVER WITH PRE-ESTIMATION

As discussed in Section 2.1, the MHO-PE achieves a good compromise between estimation

performance and computational efficiency, compared to other two MHO formulations. For this

reason, we adopt the MHO-PE method to solve the real-time nonlinear FD and estimation problem

stated in Section 2. In contrast to the MHO-PE with fully solved optimizations in [36, 38], we

propose a real-time iteration scheme in this section to implement the nonlinear MHO-PE, and

analyze its stability in Section 4.

The proposed real-time iteration scheme is based on SQP with local Gauss-Newton

approximations to the nonlinear problem (4). During each sampling interval, only one SQP iteration
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The a priori estimate 
xx¹¹kk¡¡NN jjkk = ^= x̂x??

kk¡¡NN jjkk¡¡11

¹xk¡N+1jk; ¢ ¢ ¢ ; ¹xkjk¹xk¡N+1jk; ¢ ¢ ¢ ; ¹xkjk

x̂?
k¡N jkx̂?
k¡N jk

x̂?
k¡N+1jk

; ¢ ¢ ¢ ; x̂?
kjk

x̂?
k¡N+1jk

; ¢ ¢ ¢ ; x̂?
kjk

Pre-estimated states

Solution

Post-estimated states

Forward 
prediction

SQP, 
Gauss-Newton 
approximation

Forward 
prediction

x̂?
k¡N¡1jk¡1; ¢ ¢ ¢ ; x̂?

k¡1jk¡1x̂?
k¡N¡1jk¡1; ¢ ¢ ¢ ; x̂?

k¡1jk¡1

Post-estimated states

The a priori estimate 
xx¹¹kk¡¡NN+1+1jjkk+1+1 = ^= x̂x??

kk¡¡NN+1+1jjkk

Time instant k-1
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Figure 1. Block diagram of proposed real-time MHO-PE algorithm.

is performed so that the computational cost per sample is minimized and fixed for real-time

computation. The algorithm is depicted in Figure 1 and described below.

Algorithm 1 (Real-time iteration for MHO-PE at each time instant k)

(i) Update and initialization using estimates {x̂?i|k−1, ŵ
?
i|k−1} obtained over the previous horizon

[k −N − 1, k − 1]. The a priori estimate x̄k−N |k in the arrival-cost term is updated as

x̄k−N |k = x̂?k−N |k−1. The initial guess of the state x̂k−N |k and the disturbance sequence

ŵk−N |k, · · · , ŵk−1|k, ŵk|k is assigned to be x̂?k−N |k−1 and ŵ?k−N |k−1, · · · , ŵ
?
k−1|k−1, 0,

respectively.

(ii) One SQP iteration.

ii-1) Deriving a local Gauss-Newton approximation to the NLS problem (4):

Starting from the a priori estimate x̄k−N |k, compute the pre-estimated state sequence

x̄k−N |k, x̄k−N+1|k, · · · , x̄k|k by

x̄i+1|k = f(x̄i|k, um,i) + L(ym,i − h(x̄i|k)), i = k −N, · · · , k − 1, (5)

using the available measurements ym,k−N , · · · , ym,k, um,k−N , · · · , um,k−1 and the

Luenberger observer embedded in (4). Then, along this pre-estimated state sequence,
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linearize the constraints in (4) as

x̂i+1|k = f(x̄i|k, um,i) +Ai|k(x̂i|k − x̄i|k) + L(ym,i − ŷi|k)

= Φi|kx̂i|k + Lym,i + µi|k − Lτi|k

ŷi|k = h(x̄i|k) + Ci|k(x̂i|k − x̄i|k) = Ci|kx̂i|k + τi|k

(6)

with Ai|k = ∇xf(x̄i|t, um,i), Ci|k = ∇xh(x̄i|t), and

Φi|k = Ai|k − LCi|k, µi|k = f(x̄i|k, um,i)−Ai|kx̄i|k, τi|k = h(x̄i|k)− Ci|kx̄i|k. (7)

It then follows that

yk−Nm,k − ŷ
k−N
k|k = σk −Fkx̂k−N |k, σk = Hkyk−Nk − Gkµk−Nk|k −Hkτ

k−N
k|k , (8)

where yk−Nm,k =
[
yTm,k−N yTm,k−N+1 · · · yTm,k

]T
, ŷk−Nk|k , µk−Nk|k , and τk−Nk|k are

defined similarly as ŷk−Nk|k =
[
ŷTk−N |k ŷTk−N+1|k · · · ŷTk|k

]T
,

Fk =



Ck−N |k

Ck−N+1|kΦk−N |k
...

Ck|k
k−1∏

j=k−N
Φj|k


, Gk =



0 0 · · · 0

Ck−N+1|k 0 · · · 0
...

...
. . .

...

Ck|k
k−1∏

j=k−N+1

Φj|k Ck|k
k−1∏

j=k−N+2

Φj|k · · · 0


,

Hk =



I 0 · · · 0

−Ck−N+1|kL I · · · 0
...

...
. . .

...

−Ck|k
k−1∏

j=k−N+1

Φj|kL −Ck|k
k−1∏

j=k−N+2

Φj|kL · · · I


.

(9)

The local Gauss-Newton approximation to the nonlinear problem (4) is a QP subproblem

min
x̂i|k

∥∥x̂k−N |k − x̄k−N |k∥∥2

M
+

k∑
i=k−N

∥∥ym,i − ŷi|k∥∥2

W

s.t. (6),

(10)

By using (8), x̂k−N+1|k, · · · , x̂k|k is eliminated, and the QP subproblem (10) is

transformed into the following condensed form with no constraints:

min
pk

J1
k (pk) =

∥∥x̂k−N |k − x̄k−N |k∥∥2

M
+
∥∥∥yk−Nm,k − ŷ

k−N
k|k

∥∥∥2

W̄

= ‖pk‖2M +
∥∥σk −Fkx̄k−N |k −Fkpk∥∥2

W̄

(11)

where W̄ = diag(W,W, · · · ,W ) represents a block-diagonal matrix, and pk =

x̂k−N |k − x̄k−N |k is the search direction to be determined.
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ii-2) Solving the QP subproblem (11):

The optimal search direction is

p?k = (M + FT
k W̄Fk)−1FT

k W̄ (σk −Fkx̄k−N |k). (12)

Then, the state estimate x̂?k−N |k is updated as

x̂?k−N |k = x̄k−N |k + αkp
?
k, (13)

where the step length αk ∈ (0, 1] is determined by a conventional backtracking line

search strategy, e.g., Algorithm 3.1 in [41].

(iii) Forward prediction. Starting from x̂?k−N |k, compute the post-estimated state sequence

x̂?k−N+1|k, · · · , x̂?k|k by

x̂?i+1|k = f(x̂?i|k, um,i) + L(ym,i − h(x̂?i|k)), i = k −N, · · · , k. (14)

4. STABILITY ANALYSIS

In this section, stability analysis of estimation errors of Algorithm 1 is performed by deriving

explicit error dynamics and an upper-bounding sequence on the estimation errors. Such analysis

allows developing useful insights on parameter tuning for trade-offs between stability and estimation

performance.

Similarly to the linear MHO-PE in [35, 36], the stability of our proposed real-time nonlinear

MHO-PE is characterized by the dynamics of the post-estimation error

ek−N = xk−N − x̂?k−N |k, (15)

where x̂?k−N |k is obtained after one SQP iteration in Step (ii-2) of Algorithm 1. In order to derive

error dynamics for (15), the other error dynamics involved in Algorithm 1 are first introduced as

follows.

• In Step (ii-1) of Algorithm 1, error dynamics between the true states xi and the pre-estimated

states x̄i|k:

Combining (1) and (5) gives

xi+1 − x̄i+1|k = f(xi, um,i)− f(x̄i|k, um,i)− L(h(xi)− h(x̄i|k)) + wi − Lvi, (16)

According to Lemmas 6 and 7 in [39], there exist two matrices A(xi, x̄i|k, um,i) and

C(xi, x̄i|k) with multivariate functions as their entries, such that f(xi, um,i)− f(x̄i|k, um,i) =

A(xi, x̄i|k, um,i)(xi − x̄i|k) and h(xi)− h(x̄i|k) = C(xi, x̄i|k)(xi − x̄i|k) hold. Let Āi,k, C̄i,k,

and Ξ̄i,k denote A(xi, x̄i|k, um,i), C(xi, x̄i|k), and Āi,k − LC̄i,k, respectively. Then the error
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dynamics (16) can be rewritten as

xi+1 − x̄i+1|k = (Āi,k − LC̄i,k)(xi − x̄i|k) + wi − Lvi = Ξ̄i,k(xi − x̄i|k) + wi − Lvi. (17)

• In Step (iii) of Algorithm 1, error dynamics between the true state xi and the post-estimated

states x̂?i|k:

Similarly to (16) and (17), the dynamics of the error xi − x̂?i|k is

xi+1 − x̂?i+1|k = (Âi,k − LĈi,k)(xi − x̂?i|k) + wi − Lvi = Ξ̂i,k(xi − x̂?i|k) + wi − Lvi,

(18)

where Âi,k, Ĉi,k, and Ξ̂i,k = Âi,k − LĈi,k are defined similarly to Āi,k, C̄i,k, and Ξ̄i,k in (17),

respectively: Âi,k satisfies f(xi, um,i)− f(x̂?i|k, um,i) = Âi,k(xi − x̂?i|k), and Ĉi,k satisfies

h(xi)− h(x̂?i|k) = Ĉi,k(xi − x̂?i|k). Note that the error dynamics in (17) and (18) corresponds

to the forward prediction within the current horizon [k −N, k], while the error dynamics for

ek−N in (15) aims at describing how ek−N varies between successive horizons.

• Error dynamics between the pre-estimated states x̄i|k and post-estimated states x̂?i|k.

From (5) and (14), the dynamics of the error x̂?i|k − x̄i|k is derived as

x̂?i+1|k − x̄i+1|k = (Ăi,k − LC̆i,k)(x̂?i|k − x̄i|k) = Ξ̆i,k(x̂?i|k − x̄i|k) (19)

where Ăi,k, C̆i,k, and Ξ̆i,k = Ăi,k − LC̆i,k are defined similarly to Āi,k, C̄i,k, and Ξ̄i,k in (17),

respectively: Ăi,k satisfies f(x̂?i|k, um,i)− f(x̄i|k, um,i) = Ăi,k(x̂?i|k − x̄i|k), and C̆i,k satisfies

h(x̂?i|k)− h(x̄i|k) = C̆i,k(x̂?i|k − x̄i|k).

4.1. Error dynamics of state estimates

With (12) and (13), the estimation error ek−N in (15) can be written as

ek−N = xk−N − x̄k−N |k − αk(M + FT
k W̄Fk)−1FT

k W̄ (σk −Fkx̄k−N |k). (20)

Then we follow two steps to derive the error dynamics of ek−N : (i) express how σk defined in

(8) is related to xk−N ; and (ii) express xk−N − x̄k−N |k by using the estimation error ek−N−1 =

xk−N−1 − x̂?k−N−1|k−1 of the last horizon.

First, the system dynamics (1) is rewritten as

xi+1 = f(x̄i|k, um,i) +Ai|k(xi − x̄i|k) + ψf (xi, x̄i|k, um,i) + wi

= Ai|kxi + µi|k + ψf (xi, x̄i|k, um,i) + wi

ym,i = h(x̄i|k) + Ci|k(xi − x̄i|k) + ψh(xi, x̄i|k) + vi = Ci|kxi + τi|k + ψh(xi, x̄i|k) + vi,

(21)

following the linearization performed in (6), where µi|k and τi|k are defined in (7), ψf (xi, x̄i|k, um,i)

and ψh(xi, x̄i|k) represent the linearization errors

ψf (xi, x̄i|k, um,i) = f(xi, um,i)− f(x̄i|k, um,i)−Ai|k(xi − x̄i|k),

ψh(xi, x̄i|k) = h(xi)− h(x̄i|k)− Ci|k(xi − x̄i|k).
(22)
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Using Ai|k and Ci|k, define Fok and Gok similarly to Fk and Gk in (9), respectively. Let ηk−Nf,k|k and

ηk−Nh,k|k represent

ηk−Nf,k|k =


ψf (xk−N , x̄k−N |k, um,k−N )

ψf (xk−N+1, x̄k−N+1|k, um,k−N+1)
...

ψf (xk, x̄k|k, um,k)

 , η
k−N
h,k|k =


ψh(xk−N , x̄k−N |k)

ψh(xk−N+1, x̄k−N+1|k)
...

ψh(xk, x̄k|k)

 , (23)

respectively. It then follows from (21) that yk−Nm,k can be expressed by

yk−Nm,k = Fokxk−N + Gok(µk−Nk|k + ηk−Nf,k|k + wk−Nk ) + τk−Nk|k + ηk−Nh,k|k + vk−Nk . (24)

With HkFok = Fk and HkGok = Gk (see the proof in Appendix I), substituting (24) into (8) gives

σk = Fkxk−N + Gk(ηk−Nf,k|k + wk−Nk ) +Hk(ηk−Nh,k|k + vk−Nk ). (25)

Using (25), we further write (20) as

ek−N =
[
I − αk(M + FT

k W̄Fk)−1FT
k W̄Fk

]
(xk−N − x̄k−N |k)

− αk(M + FT
k W̄Fk)−1FT

k W̄
[
Gk(ηk−Nf,k|k + wk−Nk ) +Hk(ηk−Nh,k|k + vk−Nk )

]
.

(26)

Since the a priori estimate x̄k−N |k in Step (i) of Algorithm 1 is set to x̂?k−N |k−1, xk−N −

x̄k−N |k = xk−N − x̂?k−N |k−1 is related to ek−N−1 = xk−N−1 − x̂?k−N−1|k−1 in forward prediction

(Step (iii)) of Algorithm 1. This relation is expressed in (18), then (26) can be rearranged as

ek−N = Akek−N−1 + Bw,kwk−N−1
k + Bv,kvk−N−1

k + ξk, k > N

e0 = ΓN
(
x0 − x̄0|N

)
+ Bw,Nw0

N + Bv,Nv0
N + ξN

(27)

where

Γk = I − αk(M + FT
k W̄Fk)−1FT

k W̄Fk, k ≥ N (28)

Ak = ΓkΞ̂k−N−1,k−1, k > N (29)

Bw,k =

 −αk(M + FT
k W̄Fk)−1FT

k W̄Gk, k = N[
Γk −αk(M + FT

k W̄Fk)−1FT
k W̄Gk

]
, k > N

(30)

Bv,k =

 −αk(M + FT
k W̄Fk)−1FT

k W̄Hk, k = N[
−ΓkL −αk(M + FT

k W̄Fk)−1FT
k W̄Hk

]
, k > N

(31)

ξk = −αk(M + FT
k W̄Fk)−1FT

k W̄
(
Gkηk−Nf,k|k +Hkηk−Nh,k|k

)
, k ≥ N (32)

4.2. Bounds on linearization errors

The error dynamics (27) still cannot provide a direct insight about stability, because the linearization

errors included in ηk−Nf,k|k and ηk−Nh,k|k in (23) are presented in ξk in (27). To address this issue, the
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bounds on ηk−Nf,k|k and ηk−Nh,k|k are derived in this subsection. For this purpose, it is assumed that the

nonlinearities in linearization errors ψf (xi, x̄i|k, um,i) and ψh(xi, x̄i|k) in (22) are bounded, as stated

in the following assumption.

Assumption 3 [42]. There are positive real numbers κf , κh, and ε such that∥∥ψf (xi, x̄i|k, um,i)
∥∥ ≤ κf ∥∥xi − x̄i|k∥∥2

and
∥∥ψh(xi, x̄i|k)

∥∥ ≤ κh ∥∥xi − x̄i|k∥∥2

hold for xi ∈ X, um,i ∈ U and
∥∥xi − x̄i|k∥∥ ≤ ε.

Let rw = max
wi∈W

‖wi‖ and rv = max
vi∈V
‖vi‖ denote the bounds of the disturbances wi and the noises

vi over the compact sets W and V, respectively. It follows from (23) and Assumption 3 that

∥∥∥ηk−Ns,k|k

∥∥∥ ≤ κs
∥∥∥∥∥∥∥∥∥∥∥∥



∥∥xk−N − x̄k−N |k∥∥2∥∥xk−N+1 − x̄k−N+1|k
∥∥2

...∥∥xk − x̄k|k∥∥2



∥∥∥∥∥∥∥∥∥∥∥∥
≤ κsε

∥∥∥∥∥∥∥∥∥∥∥∥



∥∥xk−N − x̄k−N |k∥∥∥∥xk−N+1 − x̄k−N+1|k
∥∥

...∥∥xk − x̄k|k∥∥



∥∥∥∥∥∥∥∥∥∥∥∥

= κsε

∥∥∥∥∥∥∥∥∥∥∥∥


xk−N − x̄k−N |k

xk−N+1 − x̄k−N+1|k
...

xk − x̄k|k



∥∥∥∥∥∥∥∥∥∥∥∥
, s represents f or h.

(33)

With xk−N − x̄k−N |k = xk−N − x̂?k−N |k−1, the stacked vector of errors of pre-estimated states in

the above equation can be further expressed by ek−N−1 = xk−N−1 − x̂?k−N−1|k−1 using (17) and

(18): 
xk−N − x̄k−N |k

xk−N+1 − x̄k−N+1|k
...

xk − x̄k|k

 = F̄k(xk−N − x̄k−N |k) + Ḡkwk−Nk + H̄kvk−Nk

= F̄k(xk−N − x̂?k−N |k−1) + Ḡkwk−Nk + H̄kvk−Nk

= F̂kek−N−1 + Ĝk

wk−N−1

wk−Nk

+ Ĥk

vk−N−1

vk−Nk

 ,

(34)

where F̄k, Ḡk, and H̄k are defined based on (17), similarly toFk, Gk, andHk in (9). The last equation

in (34) is obtained from (18), with F̂k, Ĝk, and Ĥk defined as

F̂k = F̄kΞ̂k−N,k−1, Ĝk =
[
F̄k Ḡk

]
, Ĥk =

[
−F̄kL H̄k

]
.

Therefore, the upper bounds of
∥∥∥ηk−Nf,k|k

∥∥∥ and
∥∥∥ηk−Nh,k|k

∥∥∥ can be expressed by∥∥∥ηk−Ns,k|k

∥∥∥ ≤ κsε (%e ‖ek−N−1‖+ %w
√
N + 2rw + %v

√
N + 2rv

)
, s represents f or h, (35)

according to (33) and (34), where the positive scalars %e, %w, and %v are larger than or equal to the

maximum singular values of F̂k, Ĝk, and Ĥk at all time instants, respectively.
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4.3. Error bounds of state estimates

Considering the bounds of linearization errors in (35), further insights about the error dynamics (27)

are developed in this subsection by deriving a time-varying bounding sequence for the estimation

errors.

For a generic matrixX , let σ̄(X) and σ(X) represent its maximum and minimum singular values,

respectively. Then, we define

δΓ = max
k

σ̄(Γk), δF = max
k

σ̄(Fk), δG = max
k

σ̄(Gk), δH = max
k

σ̄(Hk), δW = σ̄(W̄ ),

δL = σ̄(L), δΞ = max
k

σ̄(Ξ̂k−N−1,k−1), µM = σ(M), µO = min
k
σ(FT

k W̄Fk).
(36)

From the step length αk ∈ (0, 1] and the definitions (30) and (31), the upper bounds for∥∥Bw,kwk−N−1
k

∥∥ and
∥∥Bv,kvk−N−1

k

∥∥ are derived as∥∥Bw,kwk−N−1
k

∥∥ ≤ ‖Γkwk−N−1‖+
∥∥αk(M + FT

k W̄Fk)−1FT
k W̄Gkwk−Nk

∥∥
≤ δΓrw +

δFδW δG
µM + µO

√
N + 1rw,

(37)

∥∥Bv,kvk−N−1
k

∥∥ ≤ ‖ΓkLvk−N−1‖+
∥∥αk(M + FT

k W̄Fk)−1FT
k W̄Hkvk−Nk

∥∥
≤ δΓδLrv +

δFδW δH
µM + µO

√
N + 1rv,

(38)

respectively, for k > N . When k = N , the bounds on
∥∥Bw,kwk−Nk

∥∥ and
∥∥Bv,kvk−Nk

∥∥ are actually

the second term on the right-hand side of (37) and (38), respectively. Following (32) and (35), the

upper bound for ‖ξk‖ is

‖ξk‖ ≤
δFδW

µM + µO

(
δG

∥∥∥ηk−Nf,k|k

∥∥∥+ δH

∥∥∥ηk−Nh,k|k

∥∥∥)
=
δFδW ε(δGκf + δHκh)

µM + µO

(
%e ‖ek−N−1‖+ %w

√
N + 2rw + %v

√
N + 2rv

)
.

(39)

Theorem 1

For k > N , the norm of the estimation error is upper bounded as ‖ek−N‖ ≤ ζk−N , where {ζk} is a

sequence generated by

ζk = aζk−1 + b, k = 1, 2, · · · (40)

with

a = δΓδΞ +
δFδW ε%e(δGκf + δHκh)

µM + µO
, (41)

b =

(
δΓ +

δFδW δG
µM + µO

√
N + 1 +

δFδW ε%w(δGκf + δHκh)

µM + µO

√
N + 2

)
rw

+

(
δΓδL +

δFδW δH
µM + µO

√
N + 1 +

δFδW ε%v(δGκf + δHκh)

µM + µO

√
N + 2

)
rv.

Furthermore, if the weighting matrices M and W are selected such that a < 1, the bounding

sequence {ζk} has the following properties:
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(i) {ζk} converges exponentially to ζ∞ = b
1−a ;

(ii) if ζ > ζ∞, then ζk+1 < ζk.

Proof

The theorem can be proven by showing ‖ei+1‖ ≤ a ‖ei‖+ b ≤ aζi + b = ζi+1 when assuming

‖ei‖ ≤ ζi, according to (27)-(32) and (37)-(39). The proof of the property (ii) follows the proof

of Theorem 3 in [35].

The two properties in Theorem 1 determine the boundedness of the state estimation errors given

by the proposed real-time MHO-PE. Since δΓ < 1 according to (28), a sufficient condition for a < 1

is

δΞ +
δFδW ε%e(δGκf + δHκh)

µM + µO
< 1. (42)

Note that δΞ < 1 due to the use of the pre-stabilizing Luenberger observer. Therefore, the bounding

sequence converges exponentially if the weighting matrix M is selected such that

µM >
δFδW ε%e(δGκf + δHκh)

1− δΞ
− µO. (43)

The above derivation is attributed to the second term in (41) which describes the effect of

linearization errors in the real-time iteration scheme. In contrast, when the optimization at each

time instant k is fully solved without the real-time restriction, the optimality condition can be used

to derive the error dynamics, as in [33] for the MHO formulation (3). Therein, no linearization

errors was introduced, thus the second term in the definition (41) would not present. As a result,

in [33], an arbitrary choice of the weighting matrix M can ensure stability of the state estimation

error dynamics if δΞ < 1 holds. This comparison shows that the fixed number of iterations required

in the real-time implementation indeed need to be accounted for to ensure boundedness of the state

estimation errors.

For the proposed real-time MHO-PE described in Section 3, the tuning parameters include the

pre-estimating observer gain L, and the weighting matricesM andW . Below we describe the tuning

guidelines revealed by the above analysis:

• As in Kalman filtering, W corresponds to the inverse of the measurement noise covariance or

the beliefs in sensor measurements.

• The selection of the observer gain L is independent from W . By following any nonlinear

Luenberger observer design such as in [39], L is selected so that the error dynamics of the

pre-estimating observer is stabilized and achieves a large decay rate. The larger the decay rate

of the error dynamics is, the less error accumulation would be along the prediction horizon.

• The choice ofM should satisfy (43), and it leads to trade-offs between stability and estimation

errors. According to the MHO-PE formulation (4), asM increases to ensure (43), the proposed

MHO-PE behaves closer to the stabilized pre-estimating observer, hence the convergence
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of the bounding error sequence improves. Meanwhile, the weights on the output estimation

errors in the objective function relatively decrease, thus the online optimization plays less

significant role and estimation errors may increase.

The selections ofW and L affect the available choices ofM , since they determine the value of the

right-hand side of (43). First, the observer gain L should be stabilizing, so that δΞ < 1 is ensured,

and an explicit condition (43) can be derived for selecting M . Otherwise, we might have δΞ ≥ 1,

and no useful condition for selecting M could be obtained from (42). Second, if the observer error

dynamics achieves a larger decay rate by choosing L, then δΞ is smaller, and the right-hand side of

(43) also decreases, hence an M with a smaller µM is allowed by (43). By choosing such an M ,

the second term in the objective function (4) has a relatively larger weight than the first term, which

enforces the state estimation errors to decrease.

5. SIMULATION STUDY

In this section, we focus on an aircraft application where it is of great importance to 1) detect

AOA sensor faults; and 2) provide reliable AOA estimates after total loss of AOA sensors. In our

proposed approach, AOA estimates are computed from other measurable signals by exploiting a

low-order aerodynamic-independent model as explained in Section 5.1. The discrepancy between

AOA estimates and AOA sensor outputs are used to indicate the occurrence of sensor faults. The

estimates replace AOA sensor outputs after all available AOA sensors are indicated as faulty.

5.1. Aerodynamic-independent model

The RECONFIGURE project focuses on the longitudinal motion of an aircraft [1]. Thus the

following longitudinal model is derived for AOA sensor fault detection and estimation: ẋ(t) = g (x(t), um(t)− w(t))

ym(t) = h(x(t)) + v(t)
(44)

where the system states x ∈ Rnx , the measured system inputs um ∈ Rnu , and the measured outputs

ym ∈ Rny are defined as

x =
[
α Vt θ

]T
, um =

[
Axm Azm qm

]T
=
[
Ax + wAx

Az + wAz
q + wq

]T
,

ym =
[
Vtm Vzm θm

]T
=
[
Vt + vVt

Vz + vVz
θ + vθ

]T
,

with angle-of-attack α (rad), true airspeed Vt (kts), pitch angle θ (rad), horizontal load factor Ax

(kt/s2), vertical load factor Az (kt/s2), pitch rate q (rad/s), and vertical speed Vz (kts). In (44),

w =
[
wAx

wAz
wq

]T
and v =

[
vVt

vVz
vθ

]T
represent the measurement noises of system
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inputs and outputs, respectively. The detailed dynamic and output equations in (44) are as follows:

α̇ =
1

Vt
{−(Axm − wAx

) sinα+ (Azm − wAz
) cosα+ g cos(α− θ)}+ qm − wq,

V̇t = (Axm − wAx
) cosα+ (Azm − wAz

) sinα+ g sin(α− θ),

θ̇ = qm − wq,

Vtm = Vt + vVt
, Vzm = −Vt sin(α− θ) + vVz

, θm = θ + vθ.

Note that the above model includes no aerodynamic parameters, thus is independent of aircraft

and flight envelope [8, 43]. This feature avoids the issue of robustness to uncertain aerodynamic

parameters.

To deal with sampled measurements, the following approximated discrete-time model is derived

from (44) by applying the Euler method in numerical integration:

xk+1 = f(xk, um,k) + wk = xk + tsg (xk, um,k) + wk

ym,k = h(xk) + vk,

where ts represents the sampling interval, and wk accounts for both measurement noises of um,k

and the numerical integration errors.

5.2. Comparative simulation results

The results of a comparative simulation study are presented using data generated from the

RECONFIGURE benchmark simulator [1]. The sampling interval is 0.08 s. The standard deviations

of measurement noises are listed in Table I. Two challenging flight scenarios as shown in Figure 2

are chosen to test the performance of different algorithms. In both scenarios, the AOA α, altitude h,

and vertical load factor Az of the aircraft change significantly.

Table I. Standard deviations of measurement noises in measured inputs and outputs

Axm Azm qm Vtm Vzm θm

0.3215 kt/s2 0.3215 kt/s2 0.0140 rad/s 0.7775 kts 0.5832 kts 0.0017 rad

The EKF and real-time algorithms for the three MHO formulations are compared in terms

of computational cost and performance when applied to the AOA sensor fault detection and

estimation problem. In order to perform a fair comparison, the weighting matrices in the three MHO

formulations are the same, i.e., M = diag(131.31, 0.04, 131.31), Q = diag(8.01, 1.41, 8.01)×

105, W = diag(1.65, 2.94, 3.28× 105), while Q−1 and W−1 are chosen as the covariances of

process noises and measurement noises in EKF. For the sake of brevity, the MHO formulations

(2) and (3) are referred to as MHO-wD (with disturbances) and MHO-woD (without disturbances)

in the rest of this section, respectively.
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Figure 2. Flight data in two test scenarios.

With a short horizon length N = 2, the AOA estimates of different MHOs as well as EKF are

depicted in Figure 3. It can be seen that EKF gives the worst performance in both scenarios, while

the AOA estimates of all the three real-time MHO algorithms are almost the same. When increasing

the horizon length toN = 15, the MHO-woD performs even worse than EKF, as illustrated in Figure

4. This is due to the error propagation of the open-loop forward prediction adopted in the MHO-

woD formulation (3), which becomes more severe when the horizon length increases. By looking

further into spectral radius of the linearized dynamics of each iteration per sample as depicted in

Figure 5, it can be found that the linearized dynamics in the MHO-woD iterations are unstable or

marginally stable, hence the errors get amplified in the open-loop forward prediction. In contrast,

the linearized dynamics in the MHO-PE iterations are asymptotically stable thanks to the use of a

pre-estimating observer.

Figure 6 further shows how the performance of real-time MHO algorithms varies with different

horizon lengths. As expected, both the root mean square error and the absolute error of MHO-

woD estimates increase with the increased horizon length, and its performance eventually becomes

worse than EKF. Although the MHO-PE neglects process disturbances as the MHO-woD does, a

pre-estimating observer is exploited in the MHO-PE to attenuate the error propagation in its closed-

loop forward prediction. Therefore, the estimation errors of the MHO-PE are always smaller than

EKF, and converge with the increased horizon length. Because of explicitly accounting for process

disturbances, the MHO-wD achieves the best performance at the cost of larger computational

burden. In all the three real-time MHO algorithms, the increase of horizon length may not lead

to reduced estimation errors. As can be seen in Figure 6, the maximum absolute errors of estimates

slowly grow with the increasing horizon length. Since each maximum absolute error corresponds

to the worst-case scenario during a single simulation run, the above phenomenon is consistent with
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Figure 3. AOA estimates with the horizon length N = 2.
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(b) Scenario 2.

Figure 4. AOA estimates with the horizon length N = 15.
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Figure 5. Spectral radius of linearized dynamics in each iteration per sample in Scenario 1.
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the worst-case error bound ζ∞ = b
1−a given in Theorem 1, where b monotonically grows with the

horizon length according to its definition. Besides the horizon length, the size of the estimation

error bound is related to the weighting matrices in the objective function. Even for linear systems,

minimizing the worst-case error bound by systematically tuning the weighting matrices leads to a

non-convex optimization problem [35]. It is a future research challenge for our nonlinear MHO-

PE with the proposed real-time iteration scheme, although some heuristic tuning guidelines are

provided at the end of Section 4.3.

For the three real-time MHO algorithms, their worst-case and average computation time per

sample using different horizon lengths is reported in Figure 7. All three algorithms are implemented

in a MATLAB environment, on a computer with 2.5 GHz process and 6 GB RAM. It can be seen

that the MHO-wD is the most expensive in computation, while the MHO-woD and MHO-PE can be

much more computationally efficient, especially when the horizon is long. In summary, considering

the computational cost in the MHO-wD and the error accumulation in the MHO-woD, the MHO-PE

achieves a good balance between computational efficiency and performance.

It is straightforward to use the discrepancy between the AOA estimates α̂k and the AOA sensor

outputs αm,k, i.e., rk = αm,k − α̂k, to indicate the occurrence of sensor faults. The size of this

residual signal is evaluated by its root mean square value over a sliding window [k −Ne, k]. With

a horizon length N = 4, an evaluation sliding window length Ne = 20, and a detection threshold

0.0454, the fault detection results of the MHO-PE in the presence of runaway, oscillation, and bias

fault signals are illustrated in Figure 8.
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Figure 6. AOA estimation errors with different horizon lengths.
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Figure 7. Computation time per sample using different horizon length.
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Figure 8. fault detection results of the MHO-PE in the presence of runaway, oscillation, and bias faults.

6. CONCLUSIONS

This paper has presented a real-time moving horizon observer with pre-estimation. The use of a pre-

estimating observer replaces explicit disturbance estimates that compensate for model uncertainties

in forward prediction. This strategy significantly reduces the computational complexity by avoiding

the calculation of disturbance estimates during the online optimization. A real-time iteration scheme

with one iteration of sequential quadratic programming per sample is performed to achieve real-

time implementability. Stability analysis of the estimation error dynamics is derived to provide

useful insights about parameter tuning for trade-offs between stability and estimation performance.

Simulation studies using a nonlinear passenger aircraft benchmark simulator have been presented.

The results validate the promising performance of the proposed approach, and highlight its real-time

applicability, compared to extended Kalman filtering and two other moving horizon observers.
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APPENDIX

I. PROOF FOR HkFok = Fk AND HkGok = Gk

For 1 ≤ i ≤ N + 1, let Hk,i =
[
Hk,i,1 Hk,i,2 · · · Hk,i,i 0 · · · 0

]
, Fk,i, and F ok,i denote

the ith block-row of Hk, Fk and Fok , respectively. Since Hk and Fk are defined in (9) and Fok is

defined similarly to Fk using Ai|k and Ci|k in (21), their block entries Hk,i,j , Fk,i, and F ok,i in the

ith block-row are defined as

Hk,i,j =


I j = i, 1 ≤ i ≤ N + 1

−Ck−N+i−1|kL j = i− 1, 2 ≤ i ≤ N + 1

−Ck−N+i−1|k
k−N+i−2∏
m=k−N+j

Φm|kL 1 ≤ j ≤ i− 2, 3 ≤ i ≤ N + 1

,

Fk,i =


Ck−N+i−1|k i = 1

Ck−N+i−1|k
k−N+i−2∏
m=k−N

Φm|k 2 ≤ i ≤ N + 1
,

F oi|k =


Ck−N+i−1|k i = 1

Ck−N+i−1|k
k−N+i−2∏
m=k−N

Am|k 2 ≤ i ≤ N
.

With the above notations, HkFok = Fk can be proven by showing

i∑
j=1

Hk,i,jF
o
k,j = Fk,i (45)

for i = 1, · · · , N + 1. This is obviously valid when i = 1. For i = 2 and i = 3, we have

2∑
j=1

Hk,2,jF
o
k,j = −Ck−N+1|kLCk−N |k + Ck−N+1|kAk−N |k = Ck−N+1|kΦk−N |k = Fk,2

3∑
j=1

Hk,3,jF
o
k,j = −Ck−N+2|kΦk−N+1|kLCk−N |k − Ck−N+2|kLCk−N+1|kAk−N |k

+ Ck−N+2|kAk−N+1|kAk−N |k

= −Ck−N+2|kΦk−N+1|kLCk−N |k + Ck−N+2|kΦk−N+1|kAk−N |k

= Ck−N+2|kΦk−N+1|kΦk−N |k = Fk,3.

The same procedure can be easily extended to the cases with i > 3, leading to our claim HkFok =

Fk. The proof of HkGok = Gk directly follows the above idea, thus is omitted.
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3. Castaldi P, Geri W, Bonfè M, Simani S, Benini M. Design of residual generators and adaptive filters for the FDI of

aircraft model sensors. Control Engineering Practice 2010; 18(5):449–459.
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