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Real-Time Fault-Tolerant Moving Horizon Air Data
Estimation for the RECONFIGURE benchmark

Yiming Wan and Tamás Keviczky

Abstract—This paper proposes a real-time fault-tolerant esti-
mation approach for combined sensor fault diagnosis and air
data reconstruction. Due to simultaneous influence of winds
and latent faults on monitored sensors, it is challenging to
address the trade-off between robustness to wind disturbances
and sensitivity to sensor faults. As opposed to conventional
fault-tolerant estimators that do not consider any constraints,
we propose a constrained fault-tolerant estimator using moving
horizon estimation. By exploiting wind bounds according to
the weather or flight conditions, this approach improves fault
sensitivity without sacrificing disturbance robustness. This im-
provement is attributed to active inequality constraints caused
by faults, as shown in sensitivity analysis of the formulated
moving horizon estimation problem. The challenge of real-time
nonlinear moving horizon estimation is addressed by adopting
an efficient structure-exploiting algorithm within a real-time
iteration scheme. In order to facilitate the industrial validation
and verification, the algorithm is implemented using an Airbus
graphical symbol library to be compliant with the actual flight
control computer, and its feasibility of real-time computation has
been validated. The simulation results on the RECONFIGURE
benchmark, which is a high-fidelity Airbus simulator, over a wide
range of the flight envelope show the efficacy of the proposed
approach.

Index Terms—Fault detection and isolation, moving horizon
estimation, real-time computation, aerospace.

I. INTRODUCTION

DURING aircraft operations, air data measurements are
fed into the flight control computer (FCC) to calculate

the flight control law, thus it is critical to ensure availability
and reliability of air data measurements [1]. The industrial
state-of-the-art for civil aircraft relies on triplex hardware re-
dundancy, and performs a majority voting scheme to select the
reliable measurements and discard any failed sources [1]. This
scheme works well if only one sensor source becomes faulty,
but it is inadequate to address simultaneous multiple sensor
faults within the triplex redundancy. As recently investigated
in the RECONFIGURE project [1], one possibility to extend
guidance and control functionalities without adding additional
redundant sensors could be the incorporation of analytical
redundancy to (i) detect and isolate sensor faults, and (ii)
provide reliable air data estimation.
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Reliable state/parameter estimation in the presence of faults
highly relies on accurate and prompt fault detection and
isolation (FDI). The combination of these two tasks is referred
to as fault-tolerant estimation (FTE) in some literature, e.g.,
the multiple-model approach in [2]–[4], the adaptive Kalman
filtering approach in [5], [6], and the moving horizon esti-
mation approach exploiting a sparsity constraint on faults in
[7]. FTE is also an important part in a fault-tolerant control
system [8], [9]. Depending on the type of adopted models,
existing FDI and estimation approaches for aircraft sensors
can be classified into two categories. The first category uses an
aerodynamics-dependent model, e.g., [10]–[15]. The FDI and
estimation methods for such a model need to explicitly address
the robustness against uncertain aerodynamics. Moreover, the
aerodynamic coefficients highly depend on the specific aircraft
structure and flight envelope, thus the corresponding FDI and
estimation methods might fail in any unexpected condition
[16]. In contrast, the second category adopts an aerodynamics-
independent model, e.g., the wind velocity triangle [17]–[19],
the aircraft dynamic model with three-axis load factors as
inputs [20]–[22], or a combination of the above two models
[16], [23]. Such aerodynamics-independent models simplify
the design of FDI and estimation algorithms by avoiding the
use of uncertain aerodynamics, hence the corresponding algo-
rithms can be easily configured for different aircraft without
adapting to the changing aerodynamics [16], [20].

To achieve air data estimation tolerant to sensor faults, a
crucial issue is to distinguish wind disturbances from faults in
FDI [24]. With the assumption of constant winds, an extended
Kalman filter (EKF) was developed in [17]–[19] to estimate
both winds and the airspeed calibration factor by utilizing the
wind velocity triangle. The limitation of this approach is that
the estimation performance is highly affected by the fulfilment
of the persistence of excitation condition which is not satisfied
in some aircraft maneuvers [18], [19]. In [20], it was shown
that the airspeed-based kinematic model is not affected under
constant winds. Moreover, the groundspeed-based kinematic
model is insensitive to time-varying winds, and it was used
in [21] to address the inertial measurement unit sensor fault
reconstruction problem by an adaptive two-stage EKF. For
an aerodynamics-dependent model subject to winds, the dis-
turbance decoupling method based on differential geometry
was adopted in [10] to perfectly decouple the wind effect in
the generated residual signal. In [25], another aerodynamic-
dependent Takagi-Sugeno fuzzy model was established to
represent the nonlinear dynamics without considering the wind
effect, and a bank of sliding mode observers were designed
for sensor fault diagnosis and estimation.
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In contrast to the above literature which considers either FDI
or estimation of one particular air data parameter, this paper
focuses on fault-tolerant air data estimation subject to simulta-
neous angle-of-attack (AOA) and calibrated airspeed (VCAS)
sensor faults. This problem involves two main challenges:

• Wind disturbances and latent sensor faults simultaneously
affect VCAS measurements. On one hand, the wind
estimates are necessary in the FTE to reconstruct AOA
and VCAS reliably. On the other hand, the wind estimates
also compensate for any undetected fault effect, which
makes the generated residual signal much less sensitive
to the faults.

• In order to facilitate industrial validation and verification
(V&V), the algorithm implementation needs to use an
Airbus graphical symbol library called SAO (Specifica-
tion Assistee par Ordinateur). This library allows au-
tomatic code generation for the FCCs used by Airbus,
but includes a significantly limited set of mathematical
operation blocks [26], [27]. Such a strict constraint limits
the complexity level of the implemented algorithm to be
compliant with the actual FCCs.

In order to address the above challenges, we propose
a fault-tolerant estimator by solving a constrained moving
horizon estimation (MHE) problem in real time. This ap-
proach exploits a low-order aerodynamics-independent model
augmented with first-order integrating wind dynamics. By
exploiting constraints, the proposed MHE-based constrained
residual generator has improved sensitivity to faults compared
to conventional unconstrained residual generators, if some
inequality constraints are activated by the faults. Such fault
sensitivity improvement is shown by nonlinear programming
sensitivity analysis, and can be achieved by any general MHE
based FDI incorporating constraints. The implementation chal-
lenge of our proposed MHE based FTE method is addressed by
adopting a real-time iteration scheme with interior-point (IP)
sequential quadratic programming (SQP) strategies. It ensures
fixed computational cost per sample by limiting the number
of iterations and admitting suboptimal solutions. The real-time
feasibility of our algorithm implementation on FCCs has been
validated by the industrial V&V.

Compared to our preliminary results in [28], [29], our
presented approach in this paper additionally incorporates the
ground speed measurements in order to reliably estimate AOA
after the total loss of the three redundant AOA sensors. In
contrast to the desktop simulations in [28], [29], the results of
the industrial validation campaign are presented in this paper
to illustrate its real-time feasibility and the promising FDI and
estimation performance statistics.

This paper is organized as follows. Section II reviews the
objectives, the system model, and challenges in the problem
under investigation. Our FTE scheme is proposed in Section
III. Then, the advantages of the inequality constraints exploited
in FTE are explained in Section IV by comparing with an
unconstrained MHE based FTE. Section V discusses the
implementation of our proposed method for real-time com-
putation. In section VI, the FDI and estimation performance
of our implemented method is assessed in the high-fidelity

nonlinear RECONFIGURE benchmark by intensive simulation
runs covering a wide range of the flight envelope.

II. PROBLEM FORMULATION

Civil aircraft are generally equipped with three dedicated
sensors for each one of AOA and VCAS measurements. The
majority voting scheme is then performed among the three
redundant sensors to isolate any faulty sensors and compute a
consolidated measurement. Such a triplex redundancy based
majority voting scheme works well when only one sensor
source is faulty. However, it cannot effectively isolate multiple
faulty sources within the triplex redundancy [1]. The objective
of this work is to enhance the available hardware redun-
dancy by fault-tolerant estimation, which includes detecting
and isolating simultaneous multiple faulty AOA and VCAS
sensors, and at the same time, providing reliable estimation
of AOA and VCAS. Considering the two main challenges
explained in Section I, the proposed FTE method should have
fast fault detection, very low rate of false alarms and missed
detections, small estimation errors, and allow feasible real-time
computational cost for the FCCs.

A. Aerodynamics-independent model subject to winds

The RECONFIGURE project focuses on the longitudinal
motion of the aircraft. Thus the following longitudinal model
is derived for FTE of AOA and VCAS:

α̇(t) = Fα (α(t), Θ(t)) + uα(t)

V̇g(t) = Fv (α(t), Θ(t)) + uv(t)

ẇ(t) = uw(t)

y(t) = h (α(t),w(t), Θ(t))

ym(t) = y(t) + n(t)

(1)

with the definitions w(t) =
[
Wx(t) Wz(t)

]T
, uw(t) =[

uw,x(t) uw,z(t)
]T

, y(t) =
[
Vg(t) Vz(t) α(t) Vc(t)

]T
,

Θ(t) =
[
Vg(t) θ(t) q(t) Ax(t) Az(t) z(t)

]T
, (2)

and n(t) =
[
nvg(t) nvz(t) nα(t) nvc(t)

]T
. The system

outputs y(t) include the ground speed Vg , the vertical speed
Vz , the AOA α, and the VCAS Vc. Wx and Wz represent
horizontal and vertical wind speeds in the inertial frame,
respectively. The model parameter Θ consists of ground speed
Vg , pitch angle θ, pitch rate q, horizontal load factor Ax, ver-
tical load factor Az , and altitude z, which are all measurable.
The reason of including Vg , which is one entry of the system
outputs, in the model parameter Θ will be explained later in
Remark 1. The output equations in (1) for Vz and Vc are

Vz = hvz(α,w, Θ) and Vc = hvc(α,w, Θ), (3)

respectively. The unknown inputs uα, uv , and n account for
the effects of process noises, measurement noises, and the
model mismatches. For each redundant AOA sensor measure-
ment α(i)

m or VCAS sensor measurement V (i)
c,m, i = 1, 2, 3, the

latent sensor faults f (i)
α and f (i)

vc are additive, i.e.,

α(i)
m = α+ f (i)

α + n(i)
α , V (i)

c,m = Vc + f (i)
vc + n(i)

vc . (4)
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The first-order integrating model in (1) is a simple yet power-
ful approximation of the wind dynamics that has been widely
used in flight control, e.g., in [30]. uw,x and uw,z represent
the unknown horizontal and vertical wind accelerations.

The above system model (1) provides several advantages:
(i) it avoids using other air data measurements which are
considered as unreliable in the presence of AOA or VCAS
sensor faults, and involves only inertial sensors associated with
the model parameter Θ and the output ym; (ii) it includes
no aerodynamic parameters, thus is independent of aircraft
and flight envelope; (iii) it is insensitive to actuator faults and
structural damages; (iv) its low state dimensions are attractive
for real-time computation.

More details of the aerodynamics-independent longitudinal
model (1) are explained in the following. Let

[
u v w

]>
denote the components of the true airspeed Vt in the body
frame, whose relation to Vt is expressed as below with the
AOA α and the sideslip angle β:uv

w

 =

Vt cosα cosβ
Vt sinβ

Vt sinα cosβ

 .
The load factors Ax, Ay, Az represent the accelerations gen-
erated by the aerodynamic forces along the axes of the body
frame. The wind speed components in the inertial frame are
denoted by

[
Wx Wy Wz

]>
. The roll, pitch, and yaw angles

are given by
[
φ θ ψ

]T
, respectively, while the roll, pitch,

and yaw rates are
[
p q r

]T
accordingly.

With the above notations, the aircraft dynamics is expressed
by [31]u̇v̇
ẇ

 =

AxAy
Az

+RBI

0
0
g

−
pq
r

×
uv
w

−RBI

Ẇx

Ẇy

Ẇz

 (5)

where g denotes the gravitational acceleration, and RBI rep-
resents the rotational matrix governed by

[
φ θ ψ

]T
to

transform a vector in the inertial frame to a vector in the
body frame. Since the RECONFIGURE project focuses on
the longitudinal motion by assuming negligible lateral motion
and constant wind component Wy , we have v = 0, β = 0,
Ay = 0, Ẇy = 0, φ = 0, ψ = 0, p = 0, and r = 0. This
results in the simplified longitudinal dynamics[

u̇
ẇ

]
=

[
Ax
Az

]
+RBI

[
0
g

]
+

[
−qw
qu

]
−RBI

[
Ẇx

Ẇz

]
(6)

derived from (5), with[
u
w

]
=

[
Vt cosα
Vt sinα

]
, RBI =

[
cos θ − sin θ
sin θ cos θ

]
. (7)

Note that by using the measured load factors Ax and Az ,
the dynamic relation (6) becomes independent of aerodynam-
ics, thus is valid for different aircraft with different flight
envelopes. Instead of directly using (6) for our problem, we
choose to work with the following equivalent model derived
from (6) by exploiting (7):

α̇ =
1

Vt
fα(α,Θ) + q +

1

Vt
fw,α(α,w, Θ), (8)

V̇t = fv(α,Θ)− fw,v(α,w, Θ), (9)

with

fα(α,Θ) = −Ax sinα+Az cosα+ g cos(α− θ),
fw,α(α,w, Θ) = Ẇxsin(α− θ)− Ẇzcos(α− θ),

fv(α,Θ) = Ax cosα+Az sinα+ g sin(α− θ),
fw,v(α,w, Θ) = Ẇx cos(α− θ) + Ẇz sin(α− θ).

Note that measurements of the true airspeed Vt are unre-
liable in the presence of VCAS sensor fault [1], thus should
not be directly used for the VCAS sensor fault diagnosis. In
this case, we replace Vt in (8) with the function

Vt = hvt(α,w, Θ) = −Wx cos(α− θ)−Wz sin(α− θ)

+
√
V 2
g − [Wx sin(α− θ)−Wz cos(α− θ)]2,

(10)
which can be derived from the wind velocity triangle (Equation
(1) of [17], Equation (1.5-6) of [32])

V 2
g = u2

g + w2
g

ug = u+Wx cos θ −Wz sin θ
wg = w +Wx sin θ +Wz cos θ.

In order to derive a simplified yet reliable model without
involving Vt, we make the following approximations. For the
civil aircraft in the RECONFIGURE project [1], we have
Vg � |Wx sin(α− θ)−Wz cos(α− θ)|, then (10) can be
approximated as

hvt(α,w, Θ) ≈ −Wx cos(α−θ)−Wz sin(α−θ)+Vg. (11)

Let ∆V = Vt − Vg denote the difference between the true
airspeed Vt and the ground speed Vg due to the winds. Since
we have

V 2
g � ∆V fα(α,Θ), Vt � fw,α(α,w, Θ)

for the considered flight scenarios, the approximations

1

Vt
fα(α,Θ) ≈

(
1

Vg
− 1

V 2
g

∆V

)
fα(α,Θ) ≈ 1

Vg
fα(α,Θ),

1

Vt
fw(α,w, Θ) ≈ 0

can be used to derive

α̇ =
1

Vg
fα(α,Θ) + q + uα (13)

from (8). Similarly, by exploiting (8), (11), and θ̇ = q, we are
able to approximate (9) with

V̇g = fv(α,Θ) + uv. (14)

The above equations (13) and (14) represent the first two
equations of the model (1), and uα and uv account for the
model mismatches including the above unknown approxima-
tion errors and the effect of stochastic noises in the measured
parameters Θ.

With the airspeed Vt in the body frame and the vertical wind
Wz in the inertial frame, the vertical speed measurement Vz,m
in the inertial frame is expressed by (Equation (2.4-5) of [32])

Vz,m = −Vt sin(α− θ) +Wz + nvz
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which can be further approximated as

Vz,m = −Vg sin(α− θ) +Wz + nvz (15)

due to (11) and α− θ ≈ 0.
The output equation for the fault-free VCAS measurement

Vc,m consists of two conversions: (i) from ground speed Vg
to true airspeed Vt via the function hvt(α,w, Θ) in (10) and
(11); and (ii) from Vt to Vc [33], [34], i.e.,

Vc,m =
√

5γRT0%(Vt, T, p̄) + nvc,

=
√

5γRT0% (hvt(α,w, Θ), T, p̄) + nvc
(16)

with T = T0 + Lz, p̄ =
(

1 + L
T0
z
) g

−RL
,

%(Vt, T, p̄) =

√√√√[((
1 +

V 2
t

5γRT

)3.5

− 1

)
p̄+ 1

] 1
3.5

− 1,

where z, T , and p̄ represent pressure altitude, outside air tem-
perature, static pressure scaled by the ground static pressure
value, respectively. The constants T0, L, R, and γ take their
values according to International Standard Atmosphere [33]:
T0 = 288.15 K, L = −6.5 K/km, R = 287.052 87 (m/s)2K,
and γ = 1.4. z in Θ, T and p̄ in (16) uses altitude
measurements. nvz and nvc account for both the unknown
approximation errors and the stochastic measurement noises
in (15) and (16), respectively.

III. FAULT-TOLERANT MOVING HORIZON ESTIMATION
SCHEME

A. Fault-tolerant estimation scheme

Joint state and wind estimation 
and one-step-ahead output prediction

Residual generation, 
evaluation and FDI logic

Healthy AOA/VCAS sensors

Measurements at 
time instant k

Adaptive weighted fusion of 
AOA/VCAS measurements

Fig. 1. Fault-tolerant estimation scheme.

As depicted in Fig. 1, our proposed FDI and estimation
scheme consists of three consecutive steps:

Step 1. Residual generation, evaluation and FDI logic.
The residual signals for FDI are generated as the difference

between the AOA/VCAS measurements {α(i)
m,k, V

(i)
c,m,k} and

their one-step-ahead predictions {α̂k|k−1, V̂c,k|k−1}, i.e.,

r
(i)
α,k = α

(i)
m,k − α̂k|k−1, r

(i)
vc,k = V

(i)
c,m,k − V̂c,k|k−1, (17)

for i = 1, 2, 3. Here, the index k denotes the samples at time
instant tk. The residual signals are evaluated by their root mean
square (RMS) values over a sliding window:

J
(i)
?,k =

√√√√ 1

Neval

k∑
j=k−Neval+1

(r
(i)
?,j)

2 (18)

where ? represents “α” and “vc”, Neval is the length of residual
evaluation window. With a suitable threshold J?,th, the ith
AOA or VCAS sensor is concluded to be faulty if we have
J

(i)
?,k > J?,th for nD times during the past time window [k −
Neval + 1, k], which allows a confirmation time for the fault
detection decision.

Step 2. Adaptive weighted fusion of AOA/VCAS measure-
ments.

Similarly to [20], the redundant AOA sensors identified as
fault-free are fused into a weighted mean measurement αm:

αm,k =
∑

i∈{J(i)
α,k≤Jα,th}

β
(i)
α,kα

(i)
m,k,

β
(i)
α,k =

1∑
j∈{J(j)

α,k≤Jα,th}

1(
J

(j)
α,k

)2

1(
J

(i)
α,k

)2 .
(19)

The above weights β
(i)
α,k are adaptively computed from the

residual RMS values (18), so that the sensors with larger
residual RMS values are assigned with lower weights. The
same procedure is performed on the VCAS sensors to compute
the weights β(i)

vc,k and the weighted mean value Vc,m,k. Before
a faulty sensor is detected, the undetected faulty sensor is
given a lower weight in (19) due to its larger residual RMS
value. These adaptively fused measurements are used in the
subsequent state and wind estimation, thus the state and wind
estimates are less affected by the undetected faults embedded
in the lower-weighted sensors.

Step 3. Joint state and wind estimation and one-step-ahead
output prediction.

The joint state and wind estimation algorithm computes
the filtered estimates α̂k−1|k−1 and ŵk−1|k−1 by solving a
nonlinear MHE problem that incorporates the bounds of the
states and the noisy inputs of the model (1). It then generates
the one-step ahead predictions α̂k|k−1 and V̂c,k|k−1 for the
residual generation and evaluation in Step 1 mentioned before.

As will be explained in Section IV, the incorporated con-
straints in Step 3 effectively improve the fault sensitivity of
the generated residual signals.

B. Overview of moving horizon estimation

The MHE technique is well-known for its capability to
address nonlinearity, constraints, and robustness to initial
errors [35]. It builds on the discrete-time approximation of
the continuous-time model (1):

αk+1 = αk + tsFα(αk, Θk) + tsuα,k, (20a)
Vg,k+1 = Vg,k + tsFv(αk, Θk) + tsuv,k, (20b)
wk+1 = wk + tsuw,k, (20c)
ȳm,k = h(αk,wk, Θk) + n̄k, (20d)
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where ts is the sampling interval, (20a)–(20c) are obtained
via approximated numerical integration applied to (1). In
(20d), the output vector ȳm,k consists of the ground speed
measurement Vg,m, the vertical speed measurement Vz,m and
the two fused measurements αm and Vc,m defined in (19).
Accordingly, n̄k =

[
nvg,k nvz,k nα,k nvc,k

]T
includes

the measurement noises, where nα,k and nvc,k are the fused
noises

n?,k =
∑

i∈{J(i)
?,k≤J?,th}

β
(i)
?,kn

(i)
?,k, ? represents α or vc

for the fused measurements αm and Vc,m defined in (19). Note
that the fault diagnosis decision determines whether or not to
include the AOA and VCAS measurements in the output vector
ȳm,k. With different configurations of the output vector, the
observability property changes, as will be explained in Section
III-C.

Given a moving horizon consisting of N samples of output
measurements {ȳm,l, ȳm,l+1, . . . , ȳm,k} (l = k − N + 1) at
time instant k, the MHE problem is formulated as

min
xi,ui

1

2

∥∥∥xl − x−l|k

∥∥∥2

P−1
+

1

2

k−1∑
i=l

‖ui‖2Q−1 (21a)

+
1

2

k∑
i=l

‖ȳm,i − h(xi, Θi)‖2R−1

s.t. xi+1 = F (xi,ui, Θi), (21b)

uLB
i ≤ ui ≤ uUB

i , i = l, . . . , k − 1,

xLB
i ≤ xi ≤ xUB

i , i = l, . . . , k,

where ‖s‖2M−1 in (21a) for a vector s and a positive definite
matrix M represents a weighted vector norm computed as
sTM−1s,

x =

 αVg
w

 , u =

uαuv
uw

 , P = diag(pα, pv, pwI2),

Q = diag(qα, qv, qwI2), R = diag(Rα, Rvz, Rvc).

(22)

The function F (·) in (21b) represents the right-hand sides of
(20a)-(20c), and h(xi, Θi) is a compact form of h(αi,wi, Θi)
defined in (20d). The bounds of the inequality constraints in
(21b) can be time-varying to account for different weather
or flight conditions. At each time instant k, given the initial
condition x−l|k and the output sequence {ȳm,i, l ≤ i ≤ k}, the
nonlinear programming problem (21) is solved to compute the
sequence of state estimates x̂l|k, · · · , x̂k|k, where the filtered
estimate x̂k|k is used to compute the one-step-ahead AOA
and wind predictions. The first term of the objective function
(21a) is the so-called arrival cost to account for data before the
current estimation horizon. Here, we do not adopt a statistical
interpretation of the arrival cost as in [36], which requires
heavy computations to update x−l|k and P to represent the
information given by the filtered or smoothed density function
of xl. Instead, similarly to [37], the arrival cost term is updated
in a deterministic sense in this paper: we assign x−l|k to be the a
priori smoothed state estimate x̂l|k−1 obtained by solving (21)
over the previous horizon [l− 1, k− 1], and use P, Q, and R

as tuning parameters to achieve trade-offs between different
components of the objective function.

Throughout this paper, the MHE problem (21) with or
without inequality constraints is referred to as constrained
or unconstrained MHE (CMHE or UMHE), respectively. The
benefit of incorporating constraints in residual generation
will be analyzed in Section IV by comparing CMHE with
UMHE in terms of fault sensitivity. The real-time CMHE
implementation will be discussed in Section V.

C. Observability analysis

Let Nf
α and Nf

v represent the number of faulty AOA and
VCAS sensors, respectively. As illustrated in Table I, there are
four different categories of faulty scenarios, and the output ȳm
in (20d) needs to be configured accordingly after removing the
identified faulty AOA and VCAS sensors:

TABLE I
FOUR CATEGORIES OF FAULT SCENARIOS AND CONFIGURATIONS OF

OUTPUTS USED IN THE MHE

Fault Number of faulty AOA
Configuration of ȳm in (20d)category and VCAS sensors

I Nf
α < 3, Nf

v < 3
[
Vg,m Vz,m αm Vc,m

]T
II Nf

α = 3, Nf
v < 3

[
Vg,m Vz,m Vc,m

]T
III Nf

α < 3, Nf
v = 3

[
Vg,m Vz,m αm

]T
IV Nf

α = 3, Nf
v = 3

[
Vg,m Vz,m

]T
Although the proposed method can detect and isolate arbi-

trary number of AOA and VCAS sensor faults, the reliability
of the AOA and VCAS estimates after removing faulty sensors
is related to the local observability of the nonlinear discrete-
time system (20) under different configurations of ȳm. For
the configuration I in Table I, the matrices of the linearized
model (Ak,Bk,Ck) of the discrete-time system (20) have the
structure

Ak =


a11,k a12,k 0 0
a21,k 1 0 0

0 0 1 0
0 0 0 1

 ,

Ck =


0 1 0 0

c21,k c22,k 0 1
1 0 0 0

c41,k 0 c43,k c44,k

 ,
(23)

with the state vector defined in (22).
Remark 1. It is worth noting that the ground speed mea-
surements Vg,m are included in the output vector ȳm to
improve observability of the state α after removing the AOA
measurements in the configurations II and III. It is not of
primary concern to estimate the state Vg in our problem since
we have its fault-free measurement Vg,m. Because of this
reason, we regard Vg as a time-varying measured parameter
rather than an unknown state in (11), (15), (16), and (20a),
which explains why Vg is included in the model parameter
Θ in (2). Therefore, we actually have a12,k = c22,k = 0 in
(23), which simplifies matrix manipulations in the algorithm
implementation explained in Section V-C.
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Based on the above linearized model (23), we can make the
following observations:

• The states α, Vg , and Wz are locally observable in all the
above four configurations of ȳm thanks to the availability
of the ground speed Vg,m and the vertical speed Vz,m
measurements.

• Due to different numerical ranges of physical variables,
the local observability during certain aircraft maneuvers
may become weak, which can possibly cause numerical
problems in the nonlinear programming based CMHE
algorithm. This is especially the case in the configurations
II and IV where the AOA is to be estimated after losing
AOA measurements. This issue can be alleviated by
selecting suitable weighting matrices, in order to improve
the numerical conditioning of the QP subproblems in
Section V-A.

• The observability of the horizontal wind Wx is attributed
only to the availability of VCAS measurements. When we
have no VCAS measurements as in the configurations III
and IV, Wx becomes neither observable nor detectable
(the unobservable Wx cannot be asymptotically recon-
structed, see the definition of N -detectability in [38]),
and consequently VCAS cannot be reconstructed.

IV. FAULT SENSITIVITY OF MHE-BASED RESIDUAL

In this section, we will analyze the improvement of fault
sensitivity by exploiting the inequality constraints in the
CMHE based FTE (CMHE-FTE). This is done via nonlinear
sensitivity analysis to compare the CMHE-FTE with the
UMHE based FTE (UMHE-FTE).

Before a rigorous analysis, some intuitive explanations are
first given below. Sensor faults contaminate the measurements
before being detected. In the UMHE-FTE, the state and wind
estimates compensate for the fault effect when minimizing the
objective function (21a), thus the output residuals (17) might
be still small even in the presence of faults. In contrast, the
CMHE-FTE respects the inequality constraints in (21b). When
the presence of faults causes some inequality constraints to
become active, the state and wind estimates would be restricted
by the active constraints and reluctant to compensate for the
fault effect, thus the residuals become more sensitive to faults.

A. Fault Sensitivity of Unconstrained-MHE-based Residual

Let fk denote the sensor fault vector included in the mea-
surement ȳm,k. By defining

zk =
[
xT
l uT

l · · · xT
k−1 uT

k−1 xT
k

]T
, (24)

Ik =
[
(x−l|k)T 0T ȳT

m,l · · · 0T ȳT
m,k−1 ȳT

m,k

]T
,

(25)

εk =
[
0T 0T fT

l · · · 0T fT
k−1 fT

k

]T
, (26)

V = diag (P,Q,R, · · · ,Q,R,R) ,

F1(zk) =
[
xT
l uT

l hT(xl, Θl) · · ·

uT
k−1 hT(xk−1, Θk−1) hT(xk, Θk)

]T
,

F2(zk) =

 xl+1 − F (xl,ul, Θl)
...

xk − F (xk−1,uk−1, Θk−1)

 ,
the MHE problem (21) can be compactly written as

ẑk(Ik) = arg min
zk

1

2
‖Ik − F1(zk)‖2V−1

s.t. F2(zk) = 0,

(27)

or equivalently,

ẑk(I0
k , εk) = arg min

zk

1

2

∥∥I0
k + εk − F1(zk)

∥∥2

V−1

s.t. F2(zk) = 0,

(28)

where the information vector Ik is decomposed into the nomi-
nal part I0

k and the fault perturbation εk, i.e., Ik = I0
k+εk. The

inequality constraints in (21b) are omitted in this subsection,
and will be discussed in Section IV-B. It can be seen from (27)
that the estimate ẑk is a function of the information vector Ik.
According to (28), the filtered state estimate can be expressed
by x̂k|k = Psẑk(I0

k , εk), with Ps =
[
0 · · · 0 I

]
. Then,

since ûk|k = 0 is the optimal estimate of uk for the MHE
problem (21), we construct the one-step-ahead state prediction
x̂k+1|k = F (x̂k|k, ûk|k, Θk) = F (x̂k|k,0, Θk) according to
(21b), and generate the residual signal as

rk+1(I0
k+1, εk, fk+1)

= ȳm,k+1 − ŷk+1|k

= ȳm,k+1 − h(x̂k+1|k, Θk+1)

= h(αk+1,wk+1, Θk+1) + fk+1 + n̄k+1

− h(F (Psẑk(I0
k , εk),0, Θk), Θk+1)

(29)

according to the output equation (20d). The sensitivity of
the residual signal to faults is characterized by the first-order
derivative ∂rk+1

∂(εk,fk+1) .

Remark 2. To analyze disturbance robustness, the output
equation (20d) is written into

ȳm,k = h(αk,0, Θk) + dk + n̄k

in the fault-free case, with dk = h(αk,wk, Θk) −
h(αk,0, Θk). Then εk in (26) is redefined as

εk =
[
0T 0T dT

l · · · 0T dT
k−1 dT

k

]T
to represent the disturbance perturbation in (28) in the fault-
free case. By replacing fk+1 in (29) with dk+1, we obtain
the fault-free residual signal rk+1(I0

k+1, εk,dk+1). Similarly
to fault sensitivity, the disturbance robustness of the residual
signal in (29) is determined by

∂rk+1

∂(εk,dk+1)

∂(εk,dk+1)

∂(wl, · · · ,wk+1)
.

Since ∂rk+1

∂(εk,fk+1) in the faulty case is equal to ∂rk+1

∂(εk,dk+1) in the
fault-free case, higher fault sensitivity generally implies higher
sensitivity to disturbances, i.e., lower disturbance robustness.
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In order to derive the fault sensitivity of the residual signal
in (29), we first derive the fault sensitivity of the estimate
ẑk(I0

k , εk), i.e., ∂ẑk(I0k,εk)
∂εk

, via sensitivity analysis of the MHE
problem (28) parameterized in the fault vector εk. The Karush-
Kuhn-Tucker (KKT) conditions for the optimization problem
(28) are given by

K(zk, λ, I0
k , εk)

=

[
−JT

1 (zk)V−1
[
I0
k + εk − F1(zk)

]
+ JT

2 (zk)λ
F2(zk)

]
= 0

(30)
where we define J1(zk) = ∂F1(zk)

∂zk
and J2(zk) = ∂F2(zk)

∂zk
. The

solution to the KKT condition (30) is denoted by zk(I0
k , εk)

and λ(I0
k , εk) which are implicit functions of I0

k and εk. The
optimal solution associated with the MHE problem (28) is
ẑk(I0

k , εk) and λ̂(I0
k , εk). In the neighbourhood of the fault

vector εk, we apply the implicit function theorem to yield

∂K(zk, λ, I0
k , εk)

∂(zk, λ)

[
∂ẑk
∂εk
∂λ̂
∂εk

]
+
∂K(zk, λ, I0

k , εk)

∂εk
= 0

which can be rewritten as[
H JT

2

J2 0

] [∂ẑk
∂εk
∂λ̂
∂εk

]
=

[
JT

1 V−1

0

]
. (31)

Note that the Gauss-Newton approximated Hessian H =
JT

1 VJ1 is positive definite for the considered MHE problem
(21). The dependence of ẑk and λ̂ on I0

k and εk is omitted
hereafter for the sake of brevity. We assume that the linear
independence constraint qualification (LICQ) and sufficient-
second order condition hold, see Definition 12.4 and Section
12.5 in [39]. Then the invertibility of J2H

−1JT
2 is ensured,

and (31) can be solved by using inversion of block matrices
to compute the fault sensitivity of the estimate ẑk

∂ẑk
∂εk

= XJT
1 V−1 (32)

with

X = H−1 −H−1JT
2 (J2H

−1JT
2 )−1J2H

−1. (33)

To further derive the fault sensitivity of the residual
rk+1(I0

k+1, εk, fk+1) in (29), we use the notation ẑk(Ik) in
(27) instead of ẑk(I0

k , εk) in (28) to express the one-step-ahead
output prediction ŷk+1|k in (29). Define Îk = F1 (ẑk(Ik)),
then we have ẑk(Ik) = ẑk(Îk) according to (28). From (20d)
and (21b), the output prediction ŷk+1|k can be expressed by

ŷk+1|k = h (F (Psẑk(Ik),0, Θk), Θk+1)

= h
(
F (Psẑk(Îk),0, Θk), Θk+1

)
= ν

(
Îk, Θk, Θk+1

)
= ν (F1 (ẑk(Ik)) , Θk, Θk+1) .

(34)

In the above equation, the function ν(·) describes how the
output prediction relies on Îk, and we define

Φ = ∂ν
∂Îk

. (35)

With Ik = I0
k+εk, ∂ẑk

∂εk
in (32), ŷk+1|k in (34), and Φ defined

in (35), the fault sensitivity of the residual signal (29) can be
obtained as

Sf =
∂rk+1

∂(εk, fk+1)
=
[
∂rk+1

∂εk

∂rk+1

∂fk+1

]
=
[
− ∂ν
∂Îk

∂F1

∂ẑk
∂ẑk
∂εk

I
]

=
[
−ΦJ1XJT

1V−1 I
]

=
[
Φ I

] [V − J1XJT
1 0

0 I

] [
V−1 0
−Φ I

]
.

(36)

Different from the fused healthy measurements ȳm,k used
in the MHE problem (21), the original output measurements
ym,k+1 in (1) are used in residual generation (29). For the sake
of notational simplicity, the complete output vector ym,k+1 is
used. If the residual signal of particular sensor(s), e.g., AOA
or VCAS, is of interest, then the corresponding rows of rk+1

in the above theorem are selected. In this case, all analysis in
Section IV remains the same except that Φ changes according
to the selected output components.

B. Fault Sensitivity of Constrained-MHE-based Residual

When the faults are too small to activate any inequality
constraints, fault sensitivity of the CMHE-FTE is the same as
that of the UMHE-FTE. Next, we will show that the improved
fault sensitivity of the CMHE-FTE is attributed to the active
inequality constraints caused by sufficiently large faults. In this
case, we let ẑak and rak+1 denote the estimate and the residual
signal in the presence of the active inequality constraints
Fa(zk) ≤ 0. Then the KKT condition (31) becomesH JT

2 JT
a

J2 0 0
Ja 0 0



∂ẑak
∂εk
∂λ̂
∂εk
∂µ̂a
∂εk

 =

JT
1 V−1

0
0

 , (37)

where JT
a (zk) = ∂Fa(zk)

∂zk
, µa represents the Lagrange multi-

plier of the active inequality constraints. Again by applying the
inverse of block matrices to (37), we obtain the fault sensitivity
of the estimate and the residual signal in the presence of active
inequality constraints:

∂ẑak
∂εk

= XaJ
T
1 V−1, (38)

Saf =
∂rak+1

∂(εk, fk+1)

=
[
Φ I

] [V − J1XaJ
T
1 0

0 I

] [
V−1 0
−Φ I

]
, (39)

with

Xa = H−1 −H−1JT
2a(J2aH

−1JT
2a)−1J2aH

−1, (40)

J2a =
[
JT

2 JT
a

]T
, (41)

which are in the same form as (32) and (36), respectively.
Given the same fault vector εk+1, the estimate ẑk from the

UMHE and the estimate ẑak from the CMHE are the same
before the inequality constraints become active. It should be
noted that ẑk deviates from ẑak after any inequality constraints
in the CMHE remain active due to the presence of faults. In
this case, the Jacobian Ji(ẑk) in the UMHE is not equal to
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Ji(ẑ
a
k) in the CMHE, i = 1 or 2, which makes the comparison

of the two fault sensitivities not fair. To circumvent this
problem, we make the comparison at the same estimate, i.e.,
ẑk = ẑak at the very first instant that the inequality constraints
become active, in the following theorem.

Theorem 1. Assume that LICQ and sufficient second order
condition hold before and after sensor faults occur, and
additional inequality constraints become active in the presence
of faults. In the neighbourhood of the same estimate ẑk = ẑak
from the UMHE and CMHE, we have Saf (Saf )T ≥ SfS

T
f ,

i.e., improved fault sensitivity of the CMHE-FTE compared to
the UMHE-FTE. Besides, a larger number of active inequality
constraints lead to higher fault sensitivity.

The proof is given in Appendix A.

V. REAL-TIME MHE ALGORITHM AND ITS
IMPLEMENTATION

In this section, we will discuss the implementation of our
proposed CMHE based FTE method by using the Airbus
SAO library for industrial V&V purposes. For the nonlinear
programming problem (21), we adopt the generalized Gauss-
Newton (GGN) SQP strategy and use an efficient structure-
exploiting IP algorithm to solve each quadratic programming
(QP) subproblem. To achieve real-time computation within a
short sampling interval, we perform only one SQP iteration per
sample and fix the number of iterations in solving each QP
subproblem. This real-time iteration strategy, which has been
reported in the literature, e.g., in [40], admits sub-optimality
of the solution to enable fixed computational cost per sample.

A. Generalized Gauss-Newton SQP

For the current time horizon [l, k], the original problem
(21) is first linearized by applying the GGN SQP strategy,
around the solution x̂i|k−1 (i = l, · · · , k) and ûi|k−1 (i =
l, · · · , k−1) over the previous time horizon [l−1, k−1]. Note
that x̂k|k−1 = F (x̂k−1|k−1, ûk−1|k−1, Θk−1) is the predicted
estimate at time instant k− 1. This leads to the following QP
subproblem:

min
∆xi,∆ui

1

2
‖∆xl‖2P−1 +

1

2

k−1∑
i=l

‖ru,i −∆ui‖2Q−1 (42a)

+
1

2

k∑
i=l

‖ry,i −Ci∆xi‖2R−1

s.t. ∆xi+1 = fi + Ai∆xi + Bi∆ui, (42b)

∆uLB
i ≤ ∆ui ≤ ∆uUB

i , i = l, . . . , k − 1,

∆xLB
i ≤ ∆xi ≤ ∆xUB

i , i = l, . . . , k,

where

x−l|k = x̂l|k−1, ∆xi = xi − x̂i|k−1, ∆ui = ui − ûi|k−1,

ru,i = −ûi|k−1, ry,i = ȳm,i − h(x̂i|k−1, Θi),

Ai = ∇xF
(
x̂i|k−1, ûi|k−1, Θi

)
,

Bi = ∇uF
(
x̂i|k−1, ûi|k−1, Θi

)
,

Ci = ∇xh
(
x̂i|k−1, Θi

)
,

fi = x̂i|k−1 − x̂i+1|k−1 + tsF
(
x̂i|k−1, ûi|k−1, Θi

)
,

∆uLB
i = uLB

i − ûi|k−1, ∆uUB
i = uUB

i − ûi|k−1,

∆xLB
i = xLB

i − x̂i|k−1, ∆xUB
i = xUB

i − x̂i|k−1.

Its solution {∆xi|k,∆ui|k} is computed by using the al-
gorithm given in Section V-B. Finally, the solution to the
original problem (21) is updated as x̂i|k = x̂i|k−1 + ∆xi|k
and ûi|k = ûi|k−1 + ∆ui|k, and used to initialize the SQP
iteration at the next time instant.

B. Solving the QP subproblem

An infeasible start primal barrier IP method is adopted to
solve the QP subproblem (42). We first replace the inequality
constraints in the QP (42) with barrier terms in its objective
function, to get the approximate problem [39], [41], [42]

min
∆xi,∆ui

1

2
‖∆xl‖2P−1 +

1

2

k−1∑
i=l

‖ru,i −∆ui‖2Q−1 (43)

+
1

2

k∑
i=l

‖ry,i −Ci∆xi‖2R−1
i

+ κφ(∆u,∆x)

s.t. ∆xi+1 = fi + Ai∆xi + Bi∆ui, i = l, · · · , k − 1

where κ > 0 is a barrier parameter, and the function φ(·) is
the log barrier defined as

φ(∆u,∆x) =

k−1∑
i=l

nu∑
j=1

φu(∆ui(j)) +

k∑
i=l

Ax∑
j=1

φx(∆xi(j))

φ?(∆?i(j)) = − log(∆?UB
i (j)−∆?i(j)) (44)

− log(∆?i(j)−∆?LB
i (j)),

with ? representing u and x, and j referring to the jth entry
of the vector ?. A sequence of the approximate problems (43)
are solved iteratively for a decreasing sequence of values of
κ, as described in Algorithm 1. For real-time computation, the
number of the κ values in the sequence is fixed to nκ, and
we perform nQP iterations for each approximate problem (43)
with a particular value of κ. A simple backtracking line search
is used to ensure that the inequality constraints are satisfied at
all iterations.

At each iteration in Algorithm 1, the KKT system of
the approximate problem (43) is linearized and solved to
compute the search direction represented by ∆2xi and ∆2ui,
i = l, · · · , k. Such a linearized KKT system is equivalent to
the KKT condition of the following linear MHE problem with
only equality constraints, omitting detailed explanations for
the sake of brevity:

min
∆2xi,∆

2ui

1

2

∥∥r̄x −∆2xl
∥∥2

P−1 +
1

2

k−1∑
i=l

∥∥r̄u,i −∆2ui
∥∥2

Q̄−1
i

+
1

2

k∑
i=l

∥∥r̄y,i − C̄i∆
2xi
∥∥2

R̄−1
i

s.t. ∆2xi+1 = −rp,i + Ai∆
2xi + Bi∆

2ui,

i = l, · · · , k − 1.
(45)
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where we define

g?,i = vect
({
∇φ?(∆?−i (j))

}
j=1,2,3

)
, (46a)

L?,i = diag

({√
∇2φ?(∆?

−
i (j))

}
j=1,2,3

)
, (46b)

with ? being u and x,

rp,i = −fi −Ai∆x−i −Bi∆u−i + ∆x−i+1, (46c)

r̄x = −∆x−l , r̄u,i = Q−1
(
ru,i −∆u−i

)
− κgu,i, (46d)

r̄y,i =

[
ry,i −Ci∆x−l
−
√
κL−1

x,igx,i

]
, C̄i =

[
Ci√
κLx,i

]
, (46e)

R̄i = diag (Ri, IAx) , Q̄i =
(
Q−1 + κLT

u,iLu,i
)−1

. (46f)

Note that vect({x(i)}) and diag({x(i)}) in (46a) and (46b)
represent a column vector and a diagonal matrix, respectively,
with scalar entries {x(i)}. Because of the above equivalence,
the linearized KKT system of (43) is solved by applying
a structure-exploiting Riccati based algorithm on the linear
UMHE problem (46), which is inspired by Chapter 4 of [42]
and detailed in Algorithm 2. In each iteration of Algorithm 1,
solving the search direction by Algorithm 2 is the most expen-
sive step whose computational complexity is O(N(nx+nu)3),
with nx and nu denoting dimensions of the state xi and the
unknown input ui respectively [42].

Algorithm 1 Primal barrier interior-point algorithm

Initialization: κ = κinit, {∆x−i = 0,∆u−i = 0}i=l,··· ,k.
for j = 0→ nκnQP − 1 do

Linearization: compute all the quantities in (46).
Compute the search direction {∆2xi,∆

2ui}i=l,··· ,k
with Algorithm 2.

Line search:

sj = max

2−ns

∣∣∣∣∣∣
∆?LB

i ≤ η?,i(2−ns) ≤ ∆?UB
i ,

i = l, · · · , k, and ns ≤ nmax
s

is a nonnegative integer


where η?,i(µ) = ∆?−i +µ∆2?i with ? representing u and x.
sj is set to zero if there does not exist a nonnegative integer
ns < nmax

s that satisfies all the inequality constraints.
Update:
(∆x−i ,∆u−i )← (∆x−i ,∆u−i ) + sj(∆

2xi,∆
2ui),

κ← 0.1κ if j is an integral multiple of nκ.
end for
Solution to the QP (42):

(
∆xi|k,∆ui|k

)
←
(
∆x−i ,∆u−i

)
.

C. Implementation aspects

In the RECONFIGURE project, the implementation using
SAO is a critical step to assess the feasibility of real-time com-
putation on FCCs. The following aspects have been considered
to either speed up computation or simplify the implementation
while maintaining good estimation performance.

The overall computational cost is kept small by setting
the horizon length N of the MHE problem (21) to be 3.
Further increasing the estimation horizon length does not
necessarily improve the estimation performance, since more

Algorithm 2 Solve the search direction
1: Riccati recursion based factorization:
2: P̂l = P
3: for i = l→ k do
4: Πi ← C̄iP̂i, Ξi ←

(
R̄i + ΠiC̄

T
i

)−1
, Ωi ← C̄T

iΞi
5: Ki ← P̂iΩi, Pf

i ← P̂i −KiΠi

6: if i < k then
7: P̂i+1 ← AiP

f
i A

T
i + BiQ̄iB

T
i

8: end if
9: end for

10: Forward recursion:
11: ∆2x̂l = r̄x
12: for i = l→ k do
13: r̆i ← r̄y,i − C̄i∆

2x̂i, ∆2x′i ← ∆2x̂i + Kir̆i
14: if i < k then
15: ∆2u′i ← r̄u,i
16: ∆2x̂i+1 ← −rp,i + Ai∆

2x′i + Bi∆
2u′i

17: end if
18: end for
19: Backward recursion:
20: ∆2xk ← ∆2x′k, λk−1 ← −Ωkr̆k
21: for i = k − 1→ 0 do
22: ξi ← AT

i λi, ∆2ui ← ∆2u′i − Q̄iB
T
i λi

23: ∆2xi ← ∆2x′i −Pf
i ξi

24: if i > 0 then
25: λi−1 ← ξi − Ωi (r̆i + Πiξi)
26: end if
27: end for

wind disturbances and measurement noises are included within
the horizon. For the purpose of noise filtering in the residual
signal, the length Neval of the residual evaluation window in
(18) is set to 10, at the cost of slightly increased fault detection
delay. The number of iterations nκ and nQP in Algorithm 1
are both fixed to 2, in order to achieve the real-time feasibility
on FCCs. Extensive numerical simulations show good results
even with such small number of iterations.

As explained in Section III-C, in the configurations (ii)-(iv)
of the output vector used in the proposed MHE algorithm,
the AOA or VCAS measurements should not be involved
when all redundant AOA or VCAS sensors are identified as
faulty. However, this cannot be done by directly removing
AOA or VCAS from the output equation (20d), because
vectors and matrices of time-varying sizes (which are needed
to reconfigure the output equation in the MHE algorithm)
are not supported in the SAO library. To simplify the SAO
implementation for the above issue, we let the output equation
(20d) remain the same, but set only the third or fourth row
of the matrix Ci in (42a) to zero after losing all AOA
or VCAS sensors, respectively. By doing so, the feedback
information from AOA or VCAS becomes ineffective when
necessary in one of the configurations (ii)-(iv), and the SAO
implementation still works with vectors and matrices of fixed
sizes. In particular, this allows the MHE implementation to
work on the observable subsystem associated with (α, Vg,Wz)
and discard the unobservable Wx in the configurations (iii) and
(iv).
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Lookup tables are used to approximate logarithm and power
computations involved in g?,i and L?,i in (46) as well as the
entries of the fourth row of Ci.

Computing the search direction by solving the linearized
KKT system of (43) dominates the computational cost of
Algorithm 1. This step follows Algorithm 2 in the SAO
implementation by taking the following strategies:
• The intermediate results, e.g., Πi, Ξi, Ωi, Ki in lines 4-5,

r̆i in line 13, and ξi in line 22 of Algorithm 2, are reused
in subsequent computations.

• The symmetric or diagonal matrix structures are exploited
in all the matrix manipulations.

• To compute Ξi in line 4 of Algorithm 2, the block matrix
inversion formula is applied so that the inversion of the
matrix R̄i + ΠiC̄

T
i can be reduced to the inversion of

several matrices of smaller size which is computed via
the analytical adjugate formula.

With all the above efforts, the real-time computational cost
of our SAO implementation is 5.8 ms per sample under the
industrial assessment performed by Airbus. This highlights the
feasibility of applying online optimization based MHE meth-
ods on FCCs, although it is still computationally significant
from the perspective of an aircraft application.

VI. SIMULATION RESULTS

In this section, the Functional Engineering Simulation en-
vironment [1], [27] is used to test the proposed CMHE-FTE
approach. We first illustrate its benefits by comprisons with
the EKF based FTE (EKF-FTE) and the UMHE-FTE, and then
evaluate its effectiveness using multiple parametric runs over a
wide range of the flight envelope during different maneuvers.

A. Comparison between the EKF, UMHE, and CMHE based
FTE

We compare the proposed CMHE-FTE with conventional
unconstrained FTE in terms of robustness to disturbances
and sensitivity to faults. In order to illustrate the effect of
inequality constraints incorporated in the CMHE-FTE, we use
EKF and UMHE in Step 3 of the proposed FTE scheme
shown in Fig. 1 for comparisons. As discussed in Section
IV-A, the only difference from the CMHE-FTE in the UMHE-
FTE lies in the absence of inequality constraints. In the MHE
problem (21)-(22), the weighting matrices P, Q and R are
determined by the relative belief in the a priori estimate x−l|k,
the dynamic equation in (21b), and the output equation in
(20d), respectively. To be specific, Rα, Rvz , and Rvc in R
are set to be the measurement noise variances. The weights
qα, qv , and qw in Q are determined by the variances of the
lumped disturbances in (21b) caused by winds and model
approximation errors. The weight pα is set to be smaller (or
larger) than Rα if there is higher (or lower) belief in the a
priori AOA estimates than in the AOA measurements. The
same rule applies to the weight pv with regard to Rvc. From
the FDI point of view, pw and qw have an additional role for a
trade-off between fault sensitivity and disturbance robustness,
as discussed later in this subsection. The weighting matrices
Q and R in (21) are used as the covariance matrices in the

EKF, in order to ensure a fair comparison with the UMHE and
the CMHE. Other Hi/H∞ fault detection filters [43] are not
used in the comparisons because they consider only the FDI
performance without providing reliable state estimates. All the
simulation runs in this subsection are conducted at a speed of
350 kts and an altitude of 5000 ft.

(i) Robustness to disturbance.
First, we compare the EKF-FTE, UMHE-FTE, and CMHE-

FTE in terms of the disturbance robustness. For given wind
disturbances, disturbance robustness can be measured by max-
imum RMS of the residuals for AOA and VCAS, i.e., (18), in
the absence of faults: smaller RMS of the residual implies
higher robustness to disturbances. We test the above three
FTE methods under three wind scenarios shown in Fig. 2.
As illustrated in Fig. 3, with the same tuning parameters, the
size of the residual signals in each method generally grow with
the size of the wind disturbances. Under the wind scenarios
1 and 2, the fault-free residual signals of the EKF-FTE are
less robust than the UMHE-FTE and the CMHE-FTE, while
the residual signals of the UMHE-FTE and the CMHE-FTE
have almost the same size, because no inequality constraints
are active in both wind scenarios when solving (21). However,
the wind amplitudes in the wind scenario 3 are larger than the
assumed bounds of winds in the CMHE-FTE, which activates
the inequality constraints in the CMHE-FTE. Therefore the
residual signals of the CMHE-FTE become larger than those
of the UMHE-FTE in the wind scenario 3. From the results
under all three wind scenarios, we can see that the UMHE-
FTE and the CMHE-FTE have almost the same robustness
to disturbances when the real winds are within their assumed
bounds in the CMHE-FTE, while the CMHE-FTE becomes
less robust to disturbances than the UMHE-FTE when the real
winds are larger than their assumed bounds. This shows that
the wind bounds used in the CMHE-FTE need to be properly
selected according to the weather and flight conditions.
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Fig. 2. Three wind scenarios used to compare the EKF, UMHE, and CMHE
based FTE.

In the above fault-free simulations, the EKF-FTE gives
much larger estimation error than the UMHE-FTE and the
CMHE-FTE, and we need larger thresholds to ensure zero
false alarms when using the EKF-FTE. Thus under the con-
dition of zero false alarm, the EKF-FTE is less sensitive to
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Fig. 3. Comparison of robustness to disturbances of the EKF, UMHE, and
CMHE based FTE in different wind scenarios without faults: maximum RMS
of the residuals for AOA and VCAS with pw = 0.01 and qw = 0.1.

faults than the UMHE-FTE and the CMHE-FTE with suitably
predefined bounds of winds.

(ii) The benefit of incorporating inequality constraints.
Next, we illustrate the benefit of incorporating inequality

constraints by comparing the UMHE-FTE and the CMHE-FTE
in the case of three simultaneous VCAS sensor faults. All AOA
sensors are assumed healthy, thus only the detection of VCAS
sensor faults is discussed. Both the UMHE-FTE and CMHE-
FTE include the AWF strategy, and their detection thresholds
are set to be the same. As shown in Fig. 4(c)-(f), the UMHE-
FTE compensates for the VCAS sensor faults in its horizontal
wind estimate, thus the size of its residual signal fails to
trigger the detection threshold. This shows the ineffectiveness
of the AWF strategy in the presence of three simultaneous
VCAS sensor faults, although it improves fault sensitivity for
less than three VCAS sensor faults, as explained in Section
III-A. In contrast, as shown in Fig. 4(c), at about 24s, the
horizontal wind estimate of the CMHE-FTE reaches its upper
bound for the first time, and meanwhile it is still equal to the
unconstrained horizontal wind estimate. Fig. 4(d)-(f) further
show that at this very time instant, the fault sensitivity of the
constrained residuals is significantly higher than that of the
unconstrained residuals, which is proved by Theorem 1. After
that, the constrained wind estimates still cannot compensate
for the fault effects since its upper bound remain active. This
leads to the rapid growth of its residual signal with about
4s delay after the fault occurrence. Due to the observability
issue explained in Section III-C, the VCAS estimates become
unreliable after removing all three faulty VCAS sensors, as in
Fig. 4 (b). Similarly to the UMHE-FTE, the EKF-FTE cannot
detect all the three faulty VCAS sensors due to the same reason
related to the AWF strategy.

We proceed by repeating the test scenario in Fig. 4 with
different runaway rates and tuning parameters to highlight the
positive effect of inequality constraints on fault sensitivity.
Similarly to disturbance robustness, fault sensitivity is not
directly evaluated by computing the fault sensitivity matrix Saf
in (39), because the active constraints required to compute Saf
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Fig. 4. Comparison of the UMHE-FTE and CMHE-FTE for 3 simultaneous
VCAS runaway faults in the wind scenario 1 (runaway rate at -15 kts/s, tuning
parameters pw = 0.01 and qw = 1).

are unknown before actually solving the problem (21). Here,
we indirectly evaluate fault sensitivity by the averaged RMS
of the residual within 17.76s (370 data samples) immediately
after fault injection. Larger RMS of the residual implies higher
sensitivity to faults.

Fig. 5(a) shows the results of the UMHE-FTE and the
CMHE-FTE with different tuning parameters qw and fixed
pw = 0.01. The performance comparisons with different
pw are similar, thus omitted. For runaway rate smaller than
10 kts/s, the CMHE-FTE produces approximately the same
RMS of the residual as the UMHE-FTE, since the inequality
constraints in the CMHE-FTE have become activated for only
a very short duration within 17.76s after fault injection. For
runaway rate larger than 10 kts/s, the inequality constraints of
the CMHE-FTE quickly become active after fault injection.
Therefore, the CMHE-FTE gives significantly larger RMS of
the residual, which implies higher fault sensitivity, than the
UMHE-FTE, given either qw = 0.0001 or qw = 1. Moreover,
when qw increases from 0.0001 to 1, more wind disturbances
and a larger portion of fault perturbation can be interpreted
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by the assumed wind dynamics in (20c), thus disturbance
robustness improves but fault sensitivity decreases. However,
it can be seen from Fig. 5(a) that with the same increased qw,
the CMHE-FTE suffers much less from the reduction of fault
sensitivity than the UMHE-FTE, especially when the runaway
rate is larger than 15 kts/s. The reason is that in the CMHE-
FTE the positive effect of active inequality constraints on fault
sensitivity compensates for the negative effect of increasing
qw.

To illustrate how the fault sensitivity changes with winds,
Fig. 5(b) shows the results of the UMHE-FTE and the CMHE-
FTE under two different wind scenarios given in Fig. 2.
Even though the wind amplitudes in the wind scenario 2 are
significantly larger than in wind scenario 1, the averaged RMS
values of the residuals obtained in the UMHE-FTE do not
change much in both wind scenarios. However, for the CMHE-
FTE, the inequality constraints of the wind estimates are more
easily activated in the presence of faults, when the true wind
speed or acceleration is already close to the boundary of the
inequality constraints. This leads to the significant increase of
averaged residual RMS obtained by the CMHE-FTE in the
wind scenario 2, compared to that in the wind scenario 1.
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Fig. 5. Comparison of sensitivity to faults: RMS of predicted residual signal
for different rates of runaway faults.

B. Parametric simulation results

To further evaluate the proposed CMHE-FTE and its real-
time implementation, we performed 249 fault-free and faulty
parametric runs that sweep grid parameter dispersions over a
wide range of the flight envelope during different maneuvers.
Diverse wind profiles are simulated, with the amplitudes of
wind speeds and accelerations less than 120 kts and 15 kts/s,
respectively, in the vertical, longitudinal, and lateral directions.
When the lateral motion caused by the lateral wind is not
significant, the effect of lateral motion can be regarded as one
source of model mismatches in the longitudinal model (1),
which is accounted for by the process noise and the mea-
surement noise. Various types of sensor faults are randomly
generated and injected into AOA and VCAS sensors, as show
in Table II. Examples of different types of faults can be found
in [13], [20]. The duration of each parametric run varies from
60s to 700s. The following metrics are used to evaluate the
FDI performance:

• False alarm rate (FAR): percentage ratio of fault-free runs
where a fault is incorrectly detected;

• Miss detection rate (MDR): percentage ratio of faulty
runs where at least one faulty sensor is not detected;

• False isolation rate (FIR): percentage ratio of faulty runs
where at least one healthy sensor is incorrectly identified
as faulty;

• Max detection delay (DetD): max
i

(ti,detect − ti,fault),
where ti,detect and ti,fault represent the fault detection
time and fault occurrence time of the single run indexed
by i, respectively;

• Mean detection delay: mean
i

(ti,detect − ti,fault).

TABLE II
FAULT TYPE, AMPLITUDE, RATE, OR FREQUENCY

Fault type AOA VCAS

Oscillation 0.5∼25 deg 10∼200 kts
0.5∼1 Hz 0.5∼4 Hz

Jamming 0.5∼25 deg 10∼200 kts
Bias 0.5∼25 deg 10∼200 kts
Runaway 0.2∼25 deg/s 0.5∼50 kts/s
Non-return to zero 10%× current value 10%× current value
Noise Standard deviation Standard deviation

1∼2 deg 10∼20 kts

For the 140 fault-free runs, we get good estimation perfor-
mance as shown in the first row of Table III. Considering the
worst-case estimation errors in the fault-free runs, we set the
detection threshold to be Jα,th = 2.9 deg and Jvc,th = 12 kts
which ensures zero FAR in the fault-free scenarios. The 109
faulty runs can be divided into the four categories listed in
Table I, with 47, 22, 25, and 15 runs in each fault category,
respectively. We get zero MDR, negligible FIR, and very short
detection delay in the overall FDI performance statistics as
listed in Table IV. The averaged estimation errors in Table
III are also small. Note that the VCAS estimates under the
configurations III and IV are not included, because the VCAS
cannot be reliably reconstructed in these two configurations
due to the unobservability issue explained in Section III-C.
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Two representative challenging runs are included here to
explain the reasons of the worst-case detection delays and
estimation errors in Tables III and IV. In the first representative
run, we have a detection delay of 19.16 s for the jamming
AOA sensors, as shown in Fig. 6(a). It can be seen that
the jamming AOA sensor outputs are close to their fault-
free values, which keeps the residual RMS values below the
given detection threshold. Similar reasons lead to the worst-
case detection delays of the VCAS faults in Table IV. The
second representative run is under the Configuration III of
faulty runs. Although the faults of non-return to zero in all
three VCAS sensors are isolated by our proposed approach,
the fault information still propagates via the nominal controller
without taking any fault-tolerant control strategy, thus leading
to fast transients of the fault-free AOA outputs, as in Fig.
6(b). In the presence of such transients, the worst-case absolute
estimation error of AOA reaches 16.39 deg, which results in
incorrect fault isolation, as shown in Fig. 6(b). This problem
can be solved by (i) tuning the threshold and the horizon length
of residual evaluation, at the cost of reducing fault detection
rate and increasing detection delay; or (ii) reconfigurable
control to account for the VCAS sensor faults, which is not
within the scope of this paper. Note that the worst-case VCAS
estimation errors in Table III are satisfactory compared to
the fault-free VCAS measurements in the range from 160
to 360 kts. Dedicated tuning of the weighting matrices, the
detection thresholds, and the length of the residual evaluation
window can always improve the performance of any particular
single run, but it does not necessarily improve the overall
performance statistics of multiple runs because of the involved
trade-offs among different performance criteria. This suggests
that there are potential benefits of adaptive tuning of more
algorithm parameters which is left to future research.

TABLE III
ESTIMATION PERFORMANCE OF PARAMETRIC RUNS

Max absolute error Mean absolute error

AOA [deg] VCAS [kts] AOA [deg] VCAS [kts]

Fault-free 2.44 8.22 0.02 0.02runs
Faulty runs 16.39 8.22 0.24 0.02

TABLE IV
FAULT DIAGNOSIS PERFORMANCE OF PARAMETRIC RUNS

FAR [%] MDR [%] FIR [%]
DetD [s]

max mean

AOA 0 0 0.92 19.16 0.75
VCAS 0 0 0 4.64 0.80

VII. CONCLUSIONS

This paper presented a fault-tolerant moving horizon estima-
tion approach for combined air data sensor fault diagnosis and
estimation. Compared to the conventional unconstrained meth-
ods, the proposed constrained fault-tolerant estimator improves
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Fig. 6. Results of two representative challenging runs.

the fault sensitivity by incorporating proper wind bounds,
without sacrificing robustness to winds. Nonlinear program-
ming sensitivity analysis shows that this benefit applies to
general moving horizon estimation based residual generators
when imposing state constraints. Using an efficient structure-
exploiting algorithm within a real-time iteration scheme, the
proposed method was implemented with the Airbus graphical
symbol library. Its real-time applicability has been successfully
validated in an industrial assessment, and it has achieved satis-
factory performance over a wide range of flight envelope when
tested in a high-fidelity Airbus simulator. The limitations of
using fixed weighting matrices over the entire flight envelope
suggest that adaptive tuning of more algorithm parameters is
a promising direction to improve the overall diagnosis and
estimation performance.

APPENDIX A
PROOF OF THEOREM 1

With the same estimate ẑk = ẑak, the UMHE and CMHE
have the same Ψ, J1, J2, and H. Let the symmetric matrix Π
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denote the matrix square root of the Hessian matrix H, i.e.,
H = Π ·Π, and define

P = I−Π−1JT
2

(
J2Π

−2JT
2

)−1
J2Π

−1, (47)

Pa = I−Π−1JT
2a

(
J2aΠ

−2JT
2a

)−1
J2aΠ

−1. (48)

Then X in (33) and Xa in (40) can be rewritten as

X = Π−1PΠ−1 and Xa = Π−1PaΠ−1, (49)

respectively. Let N (·) denote the left null space of a matrix.
It can be seen from (47) and (48) that P and Pa are two
orthogonal projectors onto the left null spaces N (J2Π

−1)
and N (J2aΠ

−1), respectively (Section 5.13 of [44]). Accord-
ing to (41), the left null space N (J2aΠ

−1) is a subset of
N (J2Π

−1), which implies Pa < P . Therefore, Xa ≤ X and
V − J1XaJ

T
1 ≥ V − J1XJT

1 according to (49). Then it can
be concluded from (36) and (39) that Saf (Saf )T ≥ SfS

T
f .

For the same reason as above, the left null space
N (J2aΠ

−1) with more active inequality constraints in J2a is a
subset of N (J2aΠ

−1) with fewer active inequality constraints
in J2a. Hence when more inequality constraints are active
in solving the MHE problem, Pa becomes smaller, and fault
sensitivity increases accordingly.
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