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Abstract

This paper considers fault detection of uncertain linear parameter varying sys-
tems that have polynomial dependence on parametric uncertainties. A conven-
tional set-membership (SM) approach is able to ensure zero false alarm rate
(FAR) by using conservative threshold sets, but usually results in a high missed
detection rate (MDR) due to equally treating all uncertainty realizations with-
out distinguishing between high and low probability of occurrence. To address
this limitation, a probabilistic SM parity relation approach is proposed to ex-
ploit probabilistic information on the parametric uncertainties, which results in
a reduced MDR by admitting an acceptable FAR. The parity relation is first
polynomially parameterized with respect to uncertain parameters. Then, Gaus-
sian mixtures are adopted to efficiently compute uncertainty propagation from
stochastic uncertainties to the residual distribution. To achieve an acceptable
FAR, a non-convex confidence set of residuals – represented by a union of ellip-
soids – is determined for the consistency test. The effectiveness of the proposed
approach is illustrated using a continuous stirred tank reactor example including
performance comparisons with a deterministic zonotope-based method.
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1. Introduction

The inherent nonlinearity of practical safety-critical systems has motivated
recent research interest in nonlinear fault detection (FD) [1, 2, 3]. Linear pa-
rameter varying (LPV) models effectively represent a wide range of nonlinear
systems while preserving a (quasi-)linear structure, which has motivated their5

use in the design of nonlinear FD methods [1, 4]. As in other FD methods, a
key challenge for an LPV FD algorithm is to ensure robustness to inevitable
model uncertainties to achieve a low false alarm rate (FAR), while simultane-
ously obtaining a low missed detection rate (MDR).

The existing robust LPV methods can be classified into two main categories.10

The first category relies on an LPV observer or a parity relation to generate
residuals or fault estimates, and uses a norm-based threshold to indicate the oc-
currence of faults [5, 6, 7, 8, 9, 10, 11]. On the other hand, the second category
of robust methods, known as set membership (SM), performs a more flexible
set-based consistency test via a set-valued observer [12, 13, 14] or an SM parity15

relation [15, 16]. For tractable online computation in set-theoretic uncertainty
propagation, convex outer approximations using intervals, ellipsoids, or zono-
topes are often adopted, which compromises the MDR. A parity relation is a
receding horizon input-output (I/O) model decoupled from the unknown initial
states by using a so-called parity matrix or vector [11, 17]. To effectively ad-20

dress multiplicative uncertainties, the parity relation approach has been revised
in the SM framework [15, 16]. The derived SM parity relation is parameter-
ized by uncertain parameters, in contrast to a single parity relation as used in
[11, 17].

The above robust approaches are developed in the deterministic setting, and25

aim at ensuring zero false alarms even in the worst case. The resulting MDR is
high with such methods, because conservative detection thresholds or sets must
be adopted to account for the worst case that rarely occurs. In order to reduce
this conservatism, probabilistic robust approaches have been recently proposed
that exploit the richer information represented by probability distribution of30

model uncertainties. One line of research formulates a probabilistic relaxation
for the norm-based threshold computation [18, 19, 20, 21], while the other line
employs probabilistic set approximation for the set-based consistency test [22].
The latter approach achieves better FD performance by adopting less conserva-
tive polynomial level sets, but requires solving chance-constrained optimization35

online via a computationally expensive randomized algorithm. To address the
presence of both bounded deterministic parametric uncertainties and additive
Gaussian noises, a zonotopic Kalman filter is proposed in [23, 24] by merging
SM and probabilistic paradigms.

This paper investigates the FD problem for uncertain LPV systems with40

polynomial dependence on probabilistic parametric uncertainties. A probabilis-
tic SM parity relation approach is proposed to reduce the MDR while ensuring
an acceptable FAR. The polynomially parametrized parity relation is first de-
rived, and then restructured as a linear time-varying (LTV) transformation of an
uncertainty vector whose elements are polynomials of uncertain parameters and45
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stochastic noises. Considering non-Gaussian uncertainties, Gaussian mixtures
(GMs) are adopted to efficiently compute stochastic uncertainty propagation
from the above uncertainty vector to the residual distribution. The confidence
set of the residual GM distribution is used in the consistency test to achieve
an acceptable FAR. Such a confidence set is represented by a union of ellip-50

soids, which is a less conservative approximation of a non-convex region than
the convex approximation used in [15, 16]. The proposed approach is a nontriv-
ial extension of the authors’ previous work for uncertain linear time-invariant
systems in [25, 26] to LPV systems including both parametric uncertainties and
imprecise scheduling parameters.55

The paper is organized as follows. Sections 2 and 3 state the probabilistic
FD problem and the main idea, respectively. Section 4 constructs a polynomial
parity matrix. The residual uncertainty quantification for the consistency test
is discussed in Section 5. The simulation results using a continuous stirred tank
reactor example are presented in Section 6, and the main conclusions are drawn60

in Section 7.

2. Problem statement

Consider the fault-free uncertain discrete-time LPV system

xk+1 = A(θ̃, ρ̃k)xk +B(θ̃, ρ̃k)uk + w̃k,

yk = C(θ̃, ρ̃k)xk +D(θ̃, ρ̃k)uk + ṽk,
(1)

where uk ∈ Rnu , yk ∈ Rny , xk ∈ Rnx , w̃k, and ṽk are the system input, measured
output, state, process noise, and measurement noise, respectively. The system
parameters θ̃ ∈ Rnθ are unknown. The vector ρ̃k ∈ Rnρ contains the scheduling
parameters. The measurement of ρ̃k is denoted as

ρk = ρ̃k + η̃k, (2)

which is corrupted by a measurement noise η̃k.

Assumption 1. All the system matrices A(θ̃, ρ̃k), B(θ̃, ρ̃k), C(θ̃, ρ̃k) and D(θ̃, ρ̃k)
in (1) have polynomial dependence on both θ̃ and ρ̃k.65

Assumption 2. The uncertain parameter vector θ̃ is time invariant (TI), be-
longs to a bounded set Θ, and is described by TI random variables with known
probability density function (PDF) fθ.

Assumption 3. Noises w̃k, ṽk in (1) and η̃k in (2) are of zero-mean white
nature with known PDFs fw, fv, and fη, respectively; and θ̃, w̃, ṽ and η̃ are70

mutually independent.

Assumption 1 is not restrictive because any nonpolynomial nonlinear depen-
dence on θ̃ and ρ̃k can be adequately approximated by polynomials or piecewise
polynomials [27]. The approximation error can be made arbitrarily small as long
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as the approximating polynomial has a sufficiently large degree [28]. Therefore,75

the approximation error is assumed negligible in this paper. Otherwise, another
uncertain variable should be introduced to fully account for this approximation
error, which often leads to an increased MDR.

In Assumption 2, time invariance of θ̃ can be justified because physical pa-
rameters generally have slow variations, and are usually considered as TI over80

a finite-time horizon [16]. The PDF of θ̃ can be obtained by either offline iden-
tification from data [29, 30, 31], or a priori knowledge that specifies the relative
importance of different points in the uncertainty region Θ. The PDFs of θ̃, w̃,
ṽ and η̃ can be non-Gaussian, which is not restricted by Assumption 3.

For the sake of brevity, let A(θ̃, ρ̃k), B(θ̃, ρ̃k), C(θ̃, ρ̃k) and D(θ̃, ρ̃k) be de-
noted by Ak, Bk, Ck, and Dk, respectively. From (1) and (2), the stacked
system equations over a time window [k−h+ 1, k] of length h can be expressed
as

yk,h = O(ξ̃k)xk−h+1 +Hu(ξ̃k)uk,h +Hw(ξ̃k)w̃k,h + ṽk,h, (3a)

ρk,h = ρ̃k,h + η̃k,h, (3b)

where

yk,h =


yk−h+1

yk−h+2

...
yk

, ξ̃k =

[
θ̃
ρ̃k,h

]
, O(ξ̃k) =


Ck−h+1

Ck−h+2Ak−h+1

...

Ck
h−1∏
i=1

Ak−i

,

Hu(ξ̃k)=



Dk−h+1 0 · · · 0

Ck−h+2Bk−h+1 Dk−h+2
. . .

...
...

...
. . . 0

Ck
h−2∏
i=1

Ak−iBk−h+1 Ck
h−3∏
i=1

Ak−iBk−h+2 · · · Dk

,
(4)

uk,h, ρ̃k,h, w̃k,h, ṽk,h, and η̃k,h are defined similarly to yk,h, and Hw(ξ̃k) is85

defined similarly to Hu(ξ̃k).
In an SM FD method, the detection of faults relies on invalidating a fault-free

model [14, 23]. Specifically, a fault alarm is reported as long as the measured
output yk cannot be generated by the fault-free model (1) and its associated
uncertainty descriptions, given the system input uk and the measured schedul-90

ing parameter ρk. Such an invalidation approach does not require any fault
model, thus is not restricted to any particular fault type [14, 23]. The conven-
tional deterministic SM approach adopts the unknown-but-bounded uncertainty
description [14, 23]. In contrast, this paper aims at exploiting the probabilis-
tic information of uncertainties to further reduce the MDR by admitting an95

acceptable FAR.
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3. Overview of probabilistic SM parity relation approach

The main idea of the proposed approach is explained in this section.
According to (3), the observability matrix O(ξ̃k) polynomially depends on

ξ̃k which itself includes the unknown parameter θ̃ and the scheduling parameters
ρ̃k,h. Therefore, O(ξ̃k) is unknown and time-varying, which does not allow the
use of a conventional time-invariant parity matrix to decouple the unknown
initial state xk−h+1 in (3a). Alternatively, a polynomial parity matrix V (ξ̃k) is
first constructed in Section 4 to satisfy

V (ξ̃k)O(ξ̃k) = 0 for any ξ̃k, (5)

so that the premultiplication of (3) by V (ξ̃k) decouples the unknown initial term
O(ξ̃k)xk−h+1 and generates the parity relation

V (ξ̃k)
(
yk,h −Hu(ξ̃k)uk,h −Hw(ξ̃k)w̃k,h − ṽk,h

)
= 0. (6)

In the parity relation (6), the true parameter ξ̃k and noises w̃k,h, ṽk,h, and
η̃k,h are unavailable. Let θ, wk,h, vk,h, and ηk,h represent random realizations

of θ̃, w̃k,h, ṽk,h, and η̃k,h, respectively. Then, by defining the parameter vector

ξk =
[
θ> (ρk,h − ηk,h)>

]>
(7)

according to (3b), a residual can be expressed as a function of the considered
uncertainties, i.e.,

rk(ξ,w,v) = V (ξk)(yk,h −Hu(ξk)uk,h −Hw(ξk)wk,h − vk,h)

= G(ξk)zk,h − J (ξk)nk,h,
(8)

with
G(ξk) =

[
V (ξk) −V (ξk)Hu(ξk)

]
, zk,h =

[
y>k,h u>k,h

]>
,

J (ξk) =
[
V (ξk) V (ξk)Hw(ξk)

]
, nk,h =

[
v>k,h w>k,h

]>
.

(9)

Note that the residual rk is random, since it is computed by using random
samples of uncertain variables ξ,w,v. Accordingly, a confidence set ∆k with a
confidence level γ for rk, i.e.,

Pr{rk(ξ,w,v) ∈ ∆k|θ ∼ fθ, wk ∼ fw, vk ∼ fv, ηk ∼ fη} ≥ γ, (10)

is constructed in Section 5 by exploiting the distributional information of con-
sidered uncertainties, where Pr{·} represents the probability of the associated100

event.
With the above derivations, the following FD logic is adopted:{

0 ∈ ∆k ⇒ the monitored system is fault-free
0 /∈ ∆k ⇒ the monitored system is faulty.

(11)

Note that 0 in (11) is a zero vector whose dimension is the same as rk.
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Although this FD logic seems similar to the deterministic SM approaches in
[15, 16], there exists a significant difference: the deterministic SM approaches
rely on an overbounding convex set to ensure zero FAR, while the confidence set105

∆k used in (11) is obtained via stochastic uncertainty propagation and could
be non-convex as discussed in Section 5.

4. Computing a polynomial parity matrix

This section presents a method for computing the polynomial parity matrix
V (ξ̃k), and discusses how the non-uniqueness of V (ξ̃k) affects FD performance.110

For the ease of understanding, first we consider the case with only a scalar
θ̃ and no scheduling parameter ρ̃k. In this case, the system matrices are A(θ̃)
and C(θ̃), and the corresponding observability matrix becomes O(θ̃). Let the
degrees of the polynomial matrices A(θ̃) and C(θ̃) be denoted by dA and dC ,
respectively. Then the observability matrix O(θ̃) can be expressed as

O(θ̃) =

dO∑
j=0

Oj θ̃
j

with degree
dO = dC + (h− 1)dA. (12)

When a polynomial parity matrix

V (θ̃) =

dV∑
i=0

Viθ̃
i (13)

is selected with degree dV , (5) becomes

V (θ̃)O(θ̃) =

(
dV∑
i=0

Viθ̃
i

) dO∑
j=0

Oj θ̃
j

 = 0. (14)

The multiplication on the left-hand side of (14) is a polynomial with degree

dV + dO, whose monomial with degree i is
∑i
j=0 VjOi−j θ̃

i. All of its monomial

coefficients need to be zero, i.e.,
∑i
j=0 VjOi−j = 0, so that (14) holds for any θ̃.
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Therefore, (14) is equivalent to

VM = 0, with (15a)

V =
[
V0 V1 · · · VdV

]
, (15b)

M =



O0 O1 ··· OdO 0 ··· ··· 0 ··· 0

0 O0 ··· OdO−1 OdO 0 ··· 0 ··· 0

...
. . .

. . .
...

...
. . .

. . .
...

. . .
...

0 ··· 0 O0 O1 ··· OdO 0 ··· 0

0 ··· 0 0 O0 ··· OdO−1 OdO ··· 0

...
. . .

...
...

. . .
. . .

...
...

. . .
...

0 ··· 0 0 ··· 0 O0 O1 ··· OdO

 = 0 if dV ≥ dO, (15c)

M =


O0 O1 ··· OdV −1 OdV ··· OdO 0 ··· ··· 0

0 O0 O1 ··· OdV −1 ··· OdO−1 OdO 0 ··· 0

...
. . .

. . .
. . .

...
. . .

...
...

. . .
. . .

...
0 ··· 0 O0 O1 ··· OdO−dV +1 OdO−dV +2 ··· OdO 0

0 ··· ··· 0 O0 ··· OdO−dV OdO−dV +1 ··· OdO−1 OdO

 = 0

if dV < dO. (15d)

The multiplication between V and the ith block-column of M corresponds to
the coefficient of the monomial basis with degree i− 1 in V (θ̃)O(θ̃). Hence, the
size ofM is mM×nM, where mM = (dV +1)hny, and nM = (dV +dO+1)nx is

determined by the degree of V (θ̃)O(θ̃). The solution V to (15a) can be expressed
by (19) that will be explained later on. The block-columns {Vi} of V are then115

used to construct the polynomial parity matrix V (θ̃) according to (13).
Next, we proceed with the general case that includes both multi-dimensional

θ̃ and scheduling parameters ρ̃k,h. In this case, the dimension of ξ̃k defined

in (4) is nξ = nθ + hnρ. Let ξ̃k,i denote the ith element of ξ̃k, and ξ̃
$

k

a monomial ξ̃$1

k,1 ξ̃
$2

k,2 · · · ξ̃
$nξ
k,nξ

, where $i is a nonnegative integer, and $ =[
$>1 $>2 · · · , $>nξ

]>
is the multivariate monomial exponent. Then, any poly-

nomial matrix M(ξ̃k) can be expressed as

M(ξ̃k) =
∑

$∈π(M(ξ̃k))

M[$]ξ̃
$

k ,

where M[$] is the coefficient matrix for the monomial ξ̃$k , and π
(
M(ξ̃k)

)
rep-

resents the set of all monomial exponents included in M(ξ̃k). The degree of a

monomial ξ̃
$

k is defined by
∑nξ
i=1$i, while the degree of a polynomial matrix

M(ξ̃k) is determined by the maximal degree of the included monomials, i.e.,
max$∈π(M(ξ̃k))

∑nξ
i=1$i. If the degree of M(ξ̃k) is dM , the maximum number

of monomial terms in M(ξ̃k) is

g(dM , nξ) =
(dM + nξ)!

dM !nξ!
. (16)

vii



Based on these definitions, (5) can be expressed as ∑
$∈π(V (ξ̃k))

V[$]ξ̃
$

k


 ∑
ϕ∈π(O(ξ̃k))

O[ϕ]ξ̃
ϕ

k

 = 0. (17)

Since each monomial coefficient matrix on the left-hand side of (5) is null, (17)
is equivalent to ∑

$∈π(V (ξ̃k))

V[$]O[σ−$] = 0, σ ∈ π
(
V (ξ̃k)O(ξ̃k)

)
.

From this equation, VM = 0 can be constructed similarly to (15) as follows.
Each block in V is V[$]. Each block-column of M includes the coefficients{

O[σ−$], $ ∈ π
(
V (ξ̃k)

)}
of monomials

{
ξ̃σ−$k

}
in O(ξ̃k), and its multiplication with V produces the

monomial coefficient of ξ̃
σ

k in V (ξ̃k)O(ξ̃k). The size of M is mM × nM, with
mM = g(dV , nξ)hny and nM = g(dV + dO, nξ)nx.

The existence of a solution to VM = 0 is equivalent to the existence of a left
nullspace of M. It can be guaranteed by a sufficient condition g(dV , nξ)hny >
g(dV + dO, nξ)nx, i.e., the matrix M has more rows than columns. Using (16),
this sufficient condition can be rewritten as

nξ∏
i=1

(
1− dO

dV + dO + i

)
>

nx
hny

. (18)

Since the left-hand side of (18) is smaller than 1, the inequality hny > nx is a120

necessary condition for (18) to hold. For a fixed horizon length h, the existence
of a polynomial parity matrix V (ξ̃k) is guaranteed by selecting a sufficiently
high degree dV . Increasing either h or dV results in higher computational cost
for both offline design and online residual evaluation. Therefore, the shortest
horizon length h and the lowest degree dV are sought by iteratively increasing125

either h or dV by one until a solution to VM = 0 is found.
Let rM represent the rank of M. Let M⊥ ∈ RmM×(mM−rM) denote the

orthogonal basis of the left nullspace of M, i.e., M>⊥M = 0 and M>⊥M⊥ = I,
and it can be computed via singular value decomposition [32]. Then, the solution
to VM = 0 is expressed as

V = ΩM>⊥, (19)

where Ω ∈ Rnr×(mM−rM) has to be determined. Without loss of generality, Ω is
assumed to be full row rank. As will be presented by the following propositions,
any nonsingular matrix Ω results in the same FAR and FDR, and gives a better
FD performance than using a column-rank deficient matrix Ω.130
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Define V? = M>⊥, then the corresponding polynomial parity matrix and
generated residual are denoted as V ?(ξ) and r?k, respectively, where r?k is defined
as in (8) by replacing V (ξk) with V ?(ξk). Define a closed confidence set ∆?

k

for r?k by following (10). Assume that this closed set ∆?
k is described by ∆?

k =
{r?k|µ(r?k) ≤ 0}, where µ : Rnr 7→ Rq is a continuous vector-valued function.135

Proposition 1. If Ω is nonsingular, the achieved FAR and MDR do not depend
on the selection of Ω.

Proof. With the chosen Ω, we have V = ΩV?, V (ξk) = ΩV ?(ξk), and rk = Ωr?k
according to (8) and (19). Therefore, the confidence sets ∆?

k = {r?k|µ(r?k) ≤ 0}
and ∆k = {rk|µ(Ω−1rk) ≤ 0} give the same FAR and MDR, because µ(r?k) =140

µ(Ω−1rk) holds in any case.

Proposition 2. If Ω is column-rank deficient, the resulting parity relation
achieves a lower FAR but a higher MDR, compared to the selection V? =M>⊥.

Proof. According to (8), the residual r?k(ξ,w,v) generated by using V? can be
rewritten as

r?k(ξ,w,v) = r̄?k(ξ,w,v) + V ?(ξk)fk, (20)

where r̄?k is the fault-free part, and fk describes the contribution of latent faults.
When using V = ΩV? to generate a residual rk(ξ,w,v), rk = Ωr?k holds. Then it145

follows from (20) that rk can be similarly decomposed as rk = Ωr̄?k+ΩV ?(ξk)fk.
Since Ω is column-rank deficient, there might exist ξk such that the set of
undetectable faults {fk|ΩV ?(ξk)fk = 0} is not null, thus increasing the MDR
achieved by using V = ΩV?. For the same reason, it is possible in the fault-free
case that a residual r̄?k giving a false alarm lies in the null space of Ω, which150

reduces the FAR achieved by rk.

Remark 1. The Cayley-Hamilton theorem was exploited in [33] to construct
a polynomial parity vector for linear time-invariant systems with parametric
uncertainties, which is not applicable for the uncertain LPV systems considered
in this paper.155

Remark 2. How the FD performance of the proposed approach depends on the
horizon length h and the degree dV is illustrated in Section 6.3 via Monte Carlo
simulations. It can be observed that (i) the MDR becomes higher when dV is
larger than its minimal value, and (ii) the MDR decreases as h increases. A
rigorous proof for these observations is left to future work.160

Remark 3. For the iteration from h to h+ 1 or from dV to dV + 1, there exist
methods to incrementally update M⊥, without computing it from scratch. As
h or dV increases by one, additional rows and columns are inserted into M,
according to (15c), (15d), and (17). This feature allows incrementally updating
the SVD of M, see [34] as an example.165
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5. Computing the residual distribution and its confidence set

Since the FD logic (11) requires the confidence set ∆k defined in (10), the
residual distribution has to be quantified. In this section, the residual (8) is
first structured as an LTV transformation of an uncertainty vector. Then, the
residual distribution and its confidence set ∆k defined in (10) are computed170

using a GM approach.

5.1. Residual in an LTV structure

According to Assumption 1, G(ξk) and J (ξk) defined in (9) are polyno-
mial matrices depending on θ, ηk,h, and ρk,h. Hence G(ξk) and J (ξk) can be
expressed as

G(ξk) =

N∑
i=0

Gi(θ,ηk,h)ψi(ρk,h),

J (ξk) =

N∑
i=0

Ji(θ,ηk,h)ψi(ρk,h),

(21)

which are regarded as polynomials in terms of ρk,h: {ψi(ρk,h)} are the monomial
bases, and {Gi(θ,ηk,h)} and {Ji(θ,ηk,h)} are the corresponding coefficients.
The number N of the monomial bases {ψi(ρk,h)} is determined by the dimension
of ρk,h as well as the highest degree of ρk,h in {Gi(θ,ηk,h)} and {Ji(θ,ηk,h)}. As
long as the polynomial matrices G(ξk) and J (ξk) are obtained, {Gi(θ,ηk,h)}
and {Ji(θ,ηk,h)} can be determined according to their polynomial structure.
For instance, [

θ + ηρ2

2 + η2ρ

]
=

[
θ
2

]
+

[
0
η2

]
ρ+

[
η
0

]
ρ2.

Let nr be the dimension of the residual vector, ⊗ represent the Kronecker
product, and vec(·) denote the vectorization of a matrix by stacking its columns
into a single column vector. Then, using (21), the residual in (8) can be rewritten
into an LTV form

rk(ξ,w,v) =

N∑
i=0

{
Gi(θ,ηk,h)zk,hψi(ρk,h)− Ji(θ,ηk,h)nk,hψi(ρk,h)

}
=

N∑
i=0

{
Li,kvec

(
Gi(θ,ηk,h)

)
− Si,kJi(θ,ηk,h)nk,h

}
=
[
Lk −Sk

]︸ ︷︷ ︸
Γk

[
λL(θ,ηk,h)

λS(θ,ηk,h,nk,h)

]
︸ ︷︷ ︸

λ(θ,ηk,h,nk,h)

,

(22)

x



with

Li,k =
(
z>k,hψi(ρk,h)

)
⊗ Inr , Si,k = ψi(ρk,h)⊗ Inr , (23)

Lk =
[
L0,k L1,k · · · LN,k

]
, Sk =

[
S0,k S1,k · · · SN,k

]
, (24)

λL(θ,ηk,h) =


vec
(
G0(θ,ηk,h)

)
vec
(
G1(θ,ηk,h)

)
...

vec
(
GN (θ,ηk,h)

)
, λS(θ,ηk,h,nk,h) =


J0(θ,ηk,h)nk,h
J1(θ,ηk,h)nk,h

...
JN (θ,ηk,h)nk,h

.
(25)

The second equation in (22) is derived from the property that

vec(X1X2X3) = (X>3 ⊗X1)vec(X2)

holds for matrices X1, X2, and X3.
With the above derivations, the residual in (22) is expressed as a multipli-

cation between the coefficient matrix Γk and the uncertainty vector λ. The175

coefficient matrix Γk in (22) is time-varying, and can be computed with the on-
line data zk,h and ρk,h according to (23) and (24). The uncertainty vector λ is
random, and Section 5.2 will present how to compute its PDF by exploiting the
PDFs of the unknown parameter θ, the measurement noise ηk,h of scheduling
parameters, and nk,h representing the process noise and output measurement180

noise.

5.2. Residual distribution and its confidence set

To construct the FD logic (11), this subsection presents the computation
of the residual distribution and its confidence set. Due to its polynomial de-
pendence on uncertain variables, the uncertainty vector λ is non-Gaussian dis-185

tributed. Hence the residual generated by (22) is also non-Gaussian. To enable
efficient online computation of the residual distribution, a GM approach is pro-
posed by exploiting GM approximations to the distributions of the uncertainty
vector λ and the residual rk. The details are as follows.

Since λ(θ,ηk,h,nk,h) in (22) has TI polynomial dependence on stochastic
uncertainties θ, ηk,h, and nk,h, it is a stochastic vector whose PDF is also TI
and can be approximated offline by a mixture of Gaussians, i.e.,

p(λ) =

K∑
j=1

πjN (λ;µ
(j)
λ ,Σ

(j)
λ ), (26)

where K is the number of Gaussian components, the mixing coefficients {πj}
satisfy 0 ≤ πj ≤ 1 and

∑K
j=1 πj = 1, and µ

(j)
λ and Σ

(j)
λ represent the mean

and covariance matrix of each Gaussian component, respectively. The offline
procedure for constructing the GM distribution (26) is: (i) generate a sufficient

xi



number of samples {θ(i),η
(i)
k,h,n

(i)
k,h}, and compute λ(i) = λ(θ(i),η

(i)
k,h,n

(i)
k,h) ac-

cording to (22) and (25); and (ii) determine the GM parameters {πj , µ(j)
λ ,Σ

(j)
λ }

in (26) by solving the maximum likelihood estimation problem

max
{πj ,µ(j)

λ ,Σ
(j)
λ }

Nλ∑
i=1

ln


K∑
j=1

πjN (λ(i);µ
(j)
λ ,Σ

(j)
λ )


with the expectation-maximization (EM) algorithm [35], where Nλ represents190

the number of samples. The K can be determined by comparing multiple models
with different K’s using the Akaike information criterion [35].

As in the EM algorithm, the subsequent analysis relies on formulating GMs
in (26) in terms of a discrete latent variable ω [35]. Let ω denote a K-
dimensional binary random vector with each element ωj satisfying ωj ∈ {0, 1}
and

∑K
j=1 ωj = 1, i.e., a particular element ωj is equal to 1 and all the other

elements are null. In order to express the GM distribution p(λ) as a marginal
distribution obtained from the joint distribution p(λ,ω), define the marginal
distribution p(ω) and the conditional distribution p(λ|ω) as p(ωj = 1) = πj

and p(λ|ωj = 1) = N (λ;µ
(j)
λ ,Σ

(j)
λ ), respectively. Therefore, the joint distribu-

tion is given by p(λ,ω) = p(ω)p(λ|ω), and the GM distribution p(λ) in (26) is
then equivalently expressed as

p(λ) =
∑
ω

p(ω)p(λ|ω) =

K∑
j=1

p(ωj = 1)p(λ|ωj = 1).

This expression explicitly associates every realization of λ with a discrete value
of ω, i.e., a realization of λ is generated from a conditional Gaussian distri-
bution p(λ|ωj = 1). This point of view is useful for constructing the residual195

distribution online.
For the EM algorithm to produce a reliable GM approximation, the number

of data samples should be sufficiently large compared to the number of free GM
parameters, i.e.,

(K − 1) +Knλ +
1

2
Knλ(nλ − 1),

where nλ denotes the dimension of λ, K − 1, Knλ, and 1
2Knλ(nλ − 1) are

respectively the number of free parameters in the mixing coefficients {π(j)}, the

means {µ(j)
λ }, and the covariance matrices {Σ(j)

λ }. This requirement can be
demanding from the computation perspective if nλ is large. Actually, λ would200

have a rather high dimension as the window length h grows or the degree dV of
the polynomial parity matrix increases, according to the definition of λ in (22)
and (25). In addition, in such a high dimensional case, the EM algorithm is
prone to numerical ill-conditioning [36]. On one hand, the estimated covariance

matrix Σ
(j)
λ is more likely to be singular, since the number of samples involved205

in computing Σ
(j)
λ is small compared to the dimension of Σ

(j)
λ [36]. On the other

hand, since the elements of λ have polynomial dependence of rather different

xii



degrees on uncertain variables, their numerical values could differ by orders of
magnitude, which might also results in an ill-conditioned covariance estimate.

Two remedies are adopted in this paper to address the above issue. Firstly,210

zero elements may be present in λ due to the zero elements of Gi(θ,ηk,h) and
Ji(θ,ηk,h), thus they are removed without any information loss. Secondly, the
GM modeling step is performed on the intrinsic low-dimensional subspace of λ
by first conducting dimensional reduction as a preprocessing step. As a popular
method for dimension reduction, principal component analysis (PCA) is used215

here. Let Λ denote the data matrix consisting of the sampled uncertainty vector

λ(i), i.e., Λ =
[
λ(1) λ(2) · · · λ(Nλ)

]
. Its singular value decomposition is

Λ = USV>. By selecting the largest nc singular values that capture a significant
portion (e.g., 95%) of total variance of Λ, the approximated data matrix is Λ̂ =
U1S1V>1 , where U1 and V1 consist of the corresponding singular vectors within220

U and V, respectively, and S1 represents a diagonal matrix with its diagonal
entries being the largest nc singular values. After dimensional reduction, the
GM modeling step is carried out for V>1 , which is in a reduced subspace of
dimension nc, and its estimated GM parameters are denoted by {π̂j , µ̂(j), Σ̂(j)}.
Accordingly, the GM parameters {πj , µ(j)

λ ,Σ
(j)
λ } for λ are obtained as πj = π̂j ,225

µ
(j)
λ = U1S1µ̂

(j), Σ
(j)
λ = U1S1Σ̂(j)S>1 U>1 .

Remark 4. With the introduced dimensional reduction, the GM model is con-
structed for Λ̂ instead of the original sampled data matrix Λ. Since a small
portion of total variance in Λ is lost in the dimension reduction, Λ̂ in the re-
duced space, hence its corresponding GM model, cannot capture some uncertain230

variations under the fault-free condition. This implies that some fault-free vari-
ations are not represented by the GM approximation of the residual distribution,
which could lead to false alarms in FD, as will be illustrated by the simulation
study in Section 6.3.

Remark 5. Other approaches reviewed in [36] can be also utilized for the high-235

dimensional GM modeling, but they are not the focus of this paper.

Remark 6. To validate the GM approximation, the well-known Kolmogorov-
Smirnov distance

sup
λ∈Rnλ

|Fn(λ)− F̂ (λ)|

can be used to evaluate the goodness-of-fit between the empirical cumulative dis-
tribution function (CDF) Fn(λ) of the samples {λ(i)} and the CDF of the GM
approximation F̂ (λ) [37], with nλ denoting the dimension of λ. Computing
the above distance for multivariate distributions is non-trivial, and interested240

readers are referred to [37] for more details.

From the online measurements {uk,h,yk,h,ρk,h}, Li,k, Si,k, Lk, Sk, and Γk
can be computed according to their definitions in (22)–(24). With ωj = 1, the
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conditional distribution of the residual rk is then derived as

p(rk|ωj = 1) = N (rk;µ
(j)
r,k,Σ

(j)
r,k),

µ
(j)
r,k = Γkµ

(j)
λ , Σ

(j)
r,k = ΓkΣ

(j)
λ Γ>k ,

(27)

by performing a linear transformation (22) on the conditional Gaussian compo-
nent p(λ|ωj = 1). Hence, the distribution of the residual can be also approxi-
mated by a Gaussian mixture

p(rk) =

K∑
j=1

πjN (rk;µ
(j)
r,k,Σ

(j)
r,k). (28)

Next, the confidence set ∆k for the random residual rk(ξ,w,v) is determined
such that (10) holds.

Theorem 3. Given the GM distribution (28) of the random residual rk, Pr{rk ∈
∆k} ≥ γ holds if the confidence set ∆k is constructed as

∆k =

K⋃
j=1

∆
(j)
k , (29)

where
∆

(j)
k =

{
rk

∣∣∣(rk − µ(j)
r,k)>(Σ

(j)
r,k)−1(rk − µ(j)

r,k) ≤ χ2
nr (γ)

}
, (30)

is an ellipsoidal confidence set defined for the jth Gaussian component p(rk|ωj =
1), and χ2

nr (γ) ∈ R represents the value whose cumulative probability under the245

χ2 distribution with nr degrees of freedom is specified by γ.

Proof. With ωj = 1, rk follows the conditional Gaussian distribution p(rk|ωj =

1), and Pr{rk ∈ ∆k|ωj = 1} ≥ Pr{rk ∈ ∆
(j)
k |ωj = 1} ≥ γ holds for ∆k and ∆

(j)
k

defined in (29) and (30). Then it follows that

Pr{rk ∈ ∆k} =

K∑
j=1

Pr{rk ∈ ∆k|ωj = 1}Pr{ωj = 1}

≥
K∑
j=1

Pr{rk ∈ ∆
(j)
k |ωj = 1}Pr{ωj = 1}

≥ γ
K∑
j=1

Pr{ωj = 1} = γ.

Remark 7. Due to the possible overlaps among the confidence sets {∆(j)
k },

the actually achieved probability Pr{rk ∈ ∆k} can be larger than the predefined
confidence level γ.250
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With the confidence set ∆k defined in (29) and (30), the FD logic (11)

amounts to checking whether there exists at least one confidence ellipsoid ∆
(j)
k

such that 0 ∈ ∆
(j)
k , or equivalently, (µ

(j)
r,k)>(Σ

(j)
r,k)−1(µ

(j)
r,k) ≤ χ2

nr (γ), holds. This
FD logic can be further compactly expressed as{

νk ≤ 1 ⇒ the monitored system is fault-free
νk > 1 ⇒ the monitored system is faulty

(31)

with

νk = min
1≤j≤K

(µ
(j)
r,k)>(Σ

(j)
r,k)−1(µ

(j)
r,k)

χ2
nr (γ)

. (32)

The proposed FD approach is summarized in Algorithm 1.

Algorithm 1 Probability-guaranteed parity relation

Offline procedures:

1. Select a horizon length h and a degree dV . Compute the polynomial parity
matrix V (ξk) by following Section 4.

2. Determine the monomial bases {ψi(ρk,h), i = 0, · · · , N} and the polyno-
mial matrices {Gi(θ,ηk,h), Ji(θ,ηk,h)} in (21). Note that specific values
of θ, ρk,h, and ηk,h are not required in this step.

3. Generate a sufficient number of samples {θ(i),η
(i)
k,h,n

(i)
k,h}, compute λ(i) =

λ(θ(i),η
(i)
k,h,n

(i)
k,h) according to (22) and (25); determine the GM approxi-

mation (26) to the sample distribution of {λ(i)} using the EM algorithm.

4. Select the confidence level γ in (10).

Online procedures:

Initialization with k = h.

5. Construct uk,h,yk,h,ρk,h over the horizon [k − h+ 1, k].

6. Compute Li,k and Si,k in (23), Lk and Sk in (24), Γk in (22).

7. Compute {µ(j)
r,k,Σ

(j)
r,k} in (27) for each Gaussian component of the residual

distribution.

8. Compute νk in (32), and determine the fault presence according to (31).

9. k ← k + 1, go to Step 5.

6. Case study

6.1. Simulation setting and model description

In the case study, a well-mixed non-isothermal continuous stirred tank reac-
tor is considered. It includes three parallel irreversible elementary exothermic
reactions A→B, A→U, and A→R, where A is the reactant species, B is the
desired product, and U and R are undesired byproducts. The reactant A is fed
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Figure 1: Profile of coolant temperature Tcf.

to the reactor at a flow rate F , concentration CAf, and temperature TAf. To re-
move heat from the reactor, a cooling stream at a flow rate Fc and temperature
Tcf goes into the equipped cooling jacket. The process dynamics takes the form
[38]:

ĊA(t) =
F

V
(CAf − CA(t))−

3∑
i=1

κi(t)CA(t),

ĊB(t) = −F
V
CB(t) + κ1(t)CA(t),

Ṫ (t) =
F

V
(TAf − T (t)) +

3∑
i=1

(−∆Hi + δHi)

ρcp
κi(t)CA(t)

− UA + δUA

ρcpV
(T (t)− Tc(t)),

Ṫc(t) =
Fc
Vc

(Tcf(t)− Tc(t)) +
UA + δUA

ρccpcVc
(T (t)− Tc(t)),

(33)

where κi(t) is defined as

κi(t) = kiexp

(
−Ei
RT (t)

)
, (34)

CA and CB denote concentrations of the species A and B in the reactor, T
and Tc denote temperatures of the reactor and the cooling jacket. The feed255

concentration and temperature are fixed at CAf = 4 mol/L and TAf = 360 K,
respectively. The initial condition is CA(0) = 3.5 mol/L, CB(0) = 0 mol/L,
T (0) = Tc(0) = 360 K, which is unknown regarding the FD problem. The
cooling stream temperature Tcf varies as depicted in Figure 1. With a sampling
interval ts = 0.1 s, the sensor outputs CmB , Tm, and Tmc are the measurements260

of the reactor concentration CB, the reactor temperatures T and the cooling
jacket temperature Tc, with zero-mean Gaussian white noises vCB

, vT , and vTc
,

whose standard deviations are 0.01 mol/L, 0.1 K, and 0.1 K, respectively.
The system parameters are described in Table 1. As shown in (33), the en-

thalpies {∆Hi} and the heat transfer coefficient UA are subject to probabilistic265

time-invariant uncertainties represented by {δHi} and δUA, respectively. In this
simulation, {δHi} are uniformly distributed over the interval [−100, 100] J/mol,
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Figure 2: System outputs from 100 fault-free Monte Carlo simulations with and without
parametric uncertainties.

while δUA follows a truncated Gaussian distribution which is truncated over
[−1 × 105, 1 × 105] J/(min·K) from a conventional Gaussian distribution with
zero mean and standard deviation 1×105 J/(min·K). Figure 2 depicts the sensor270

outputs CmB (t) and Tm(t) from 100 fault-free Monte Carlo simulations with and
without the above uncertain parameters. The clear difference between fault-
free output behaviors in the above two cases implies that neglecting parametric
uncertainties would result in severe false alarms.

The following two fault scenarios are considered:275

• Sensor bias: the reactor temperature sensor output Tm(t) becomes biased
by 1.7 K, i.e., Tm(t) = T (t) + 1.7 + vT (t) for t ≥ 15 s.

• Valve stuck: the flow valve of the cooling stream gets stuck at Tcf =
22 L/min for t ≥ 15 s.

To account for the nonlinear dependence of {κi(t)} in (34) on T , {κi(t)} over
the operation range T ∈ [345, 365] K are approximated by polynomials g1(Tk),
g2(Tk), and g3(Tk) with degrees 5, 4, and 4, whose maximum absolute approxi-
mation errors are 1.05× 10−10, 3.06× 10−12, and 3.06× 10−12, respectively. By
applying the Euler method and replacing {κi} in (34) with polynomials {gi(T )},
the continuous-time system (33) with parameters in Table 1 is transformed into
the following discrete-time LPV form whose scheduling parameter is the reactor
temperature Tk, i.e.,

xk+1 = A(Tk)xk +Buk +Bww0k,

yk = Cxk +Dvv0k,
(35)
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Table 1: System parameters

Parameter Description Value Unit

F Inlet flow rate 83.3 L/min
Fc Flow rate of cooling stream 50 L/min
V Tank volume 1000 L
Vc Volume of cooling jacket 100 L
∆H1 Enthalpy of A→B −5× 104 J/mol
∆H2 Enthalpy of A→U −5.2× 104 J/mol
∆H3 Enthalpy of A→R −5.4× 104 J/mol
UA Heat transfer coefficient 9.01× 105 J/(min·K)
k1 Pre-exponential constant of A→B 5× 104 min−1

k2 Pre-exponential constant of A→U 5× 103 min−1

k3 Pre-exponential constant of A→R 5× 103 min−1

E1 Activation energy of A→B 5× 104 J/mol
E2 Activation energy of A→U 7.53× 104 J/mol
E3 Activation energy of A→R 7.53× 104 J/mol
R Gas constant 8.314 J/(mol·K)
ρ Fluid density in reactor 1000 g/L
cp Fluid heat capacity in reactor 0.231 J/(g·K)
ρc Fluid density in cooling jacket 1000 g/L
cpc Fluid heat capacity in cooling jacket 4.2 J/(g·K)

where

xk =
[
CA,k CB,k Tk Tc,k

]>
, uk =

[
CAf TAf Tcf,k

]>
,

yk =
[
CmB,k Tmk Tmc,k

]>
,

A(Tk) =


0.9917− 0.1

∑3
i=1 gi(Tk) 0 0 0

0.1g1(Tk) 0.9917 0 0∑3
i=1(αi + β1δ

0
Hi

)gi(Tk) 0 0.6017− β2δ
0
UA 0.3900 + β2δ

0
UA

0 0 0.2145 + β3δ
0
UA 0.7355− β3δ

0
UA

 ,
α1 = 21.6450, α2 = 22.5108, α3 = 23.3766,

β1 = 0.0433, β2 = 0.0390, β3 = 0.0214,

B =


0.0083 0 0

0 0 0
0 0.0083 0
0 0 0.0500

, Bw =


10−6 0 0 0

0 10−6 0 0
0 0 10−5 0
0 0 0 10−5

,
Dv =

0.01 0 0
0 0.1 0
0 0 0.1

 ,
δ0
Hi

and δ0
UA are scaled from δHi and δUA to lie within [−1, 1], and w0k and280

v0k follow standard normal distribution to account for discretization errors and
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measurement noises, respectively.

6.2. Implemented algorithms

Both the proposed Algorithm 1 and the zonotope-based parity relation in
[15] are implemented for comparisons. In the offline procedures of Algorithm285

1, the horizon length h is set to 3, and the obtained polynomial parity matrix
V (Tk, δ

0) is 2 × 9 with degree 1, where δ0 represents
[
δ0
H1

δ0
H2

δ0
H3

δ0
UA

]
.

To account for the additive noise 0.1v0k,T of the measured temperature Tmk ,
Tmk −0.1v0k,T is used to replace Tk in the parity matrix V (Tk, δ

0), hence V (Tmk −
0.1v0k,T , δ

0) is used instead. Then, the uncertainty vector λ defined in (22)290

includes 98 nonzero entries, each of which is a polynomial in terms of δ0, w0k,
and v0k. For the offline GM modeling, 5000 samples {λ(i)} of λ are generated
to construct a sampled data matrix Λ. To avoid ill-conditioning, dimension
reduction via PCA is applied to the sampled data matrix Λ such that the
data variance in a reduced subspace of dimension 7 can captures 99% of the295

total variance. The corresponding PDF of the sampled data in this reduced
subspace is approximated by a GM with 2 components. As illustrated in Figure
3, the non-Gaussian distribution of samples in the reduced subspace is well
approximated by the obtained GM. The selected confidence level γ is 99%. In
the online procedures of Algorithm 1, steps 5-7 are followed to compute the300

GM parameters of the residual distribution, and the FD decision is made by
following step 8.

As for the zonotope-based method in [15], a zonotope

Z = {p + Eε : ε ∈ Bnε} (36)

is constructed offline such that it contains 99% of the sampled uncertainty vec-
tors {λ(i)}, where nε is equal to the rank of the sampled data matrix Λ, and
Bnε ∈ Rnε×1 is a unitary box composed of nε unitary intervals B = [−1, 1]. In
this particular example, the dimensions of p, E, and ε are p ∈ R98, E ∈ R98×8,
and ε ∈ R8×1, respectively. Please refer to [15] for more details of computing the
center p and the shape matrix E of the zonotope Z . The associated FD decision
depends on checking whether the origin lies in the residual confidence zonotope
{Γkp + ΓkEε : ε ∈ Bnε} computed from (22) and (36). This corresponds to the
FD logic [15]{

νzono,k ≤ 1 ⇒ the monitored system is fault-free
νzono,k > 1 ⇒ the monitored system is faulty

(37)

where νzono,k is the solution to the linear program

min
ε,νzono,k

νzono,k

s.t. Γkp + ΓkEε = 0,

− νzono,k ≤ εi ≤ νzono,k, 1 ≤ i ≤ nε,
νzono,k ≥ 0

(38)
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Figure 3: 2-dimensional projections of the sampled λ and its GM approximation within the
reduced subspace. The blue dots represent the 5000 random samples. Each red circle and
ellipse indicate the mean and 99% confidence set of the corresponding Gaussian component,
respectively.

with εi denoting the ith element of ε. Two cases of the solution to (37) imply the
detection of faults: (i) a feasible solution with νzono,k > 1; and (ii) no feasible
solution exists. In the latter case, νzono,k can be set to any value larger than305

1 for the FD purpose. Note that the zonotope-based method in [15] relies on
an LPV residual generator similar to the form of (22), but does not derive the
polynomial parity matrix used in this paper.

6.3. Performance evaluations and comparisons

The FD results of one simulation run in the considered two fault scenarios310

are shown in Figure 6.3. The “residual evaluation” in Figure 6.3 refers to νk in
(32) and νzono,k in (38). Compared to the zonotope-based method, in both two
fault scenarios, our proposed approach is more sensitive to faults, and achieves
much fewer number of missed detections after fault injection at 15 s, while giving
only one false alarm before fault injection.315

In order to evaluate the statistical FD performance, Monte Carlo simulations
are performed for Nmc times, and the performance metrics are defined by

FAR =
total number of false alarms for t ∈ [0, 15]

(number of samples for t ∈ [0, 15])×Nmc
× 100%,

MDR =
total number of miss detections for t ∈ (15, 30]

(number of samples for t ∈ (15, 30])×Nmc
× 100%.

The effect of parametric uncertainty bounds on the FD performance is eval-
uated by the minimal fault magnitude that is detected with an MDR less than
5% in 100 Monte Carlo runs. As shown in Table 2, when using the tuning pa-
rameters described in Section 6.2, as the bound of δUA grows, there is always
an increase in the minimal sensor fault magnitude detected with an MDR less320

than 5%.
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(a) Reactor temperature sensor bias 1.7 K after 15 s..
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(b) Cooling flow valve stuck at 22 L/min after 15 s.

Figure 4: Residual evaluation and detection results of one simulation run in the considered
two fault scenarios. In the lower two plots of each subfigure, at each time instant, “1” indicates
an alarm from the detector, while “0” represents no reported alarm.
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Figure 5: FAR and MDR for different choices of the horizon length h and the degree dV . The
number of Gaussian components is fixed to 2. The simulated fault is a constant bias 1.4 K on
the reactor temperature sensor.

How the statistical FD performance depends on tuning parameters is ana-
lyzed by performing Monte Carlo runs, and illustrated in Table 3 and Figure 5.
It can be seen from Table 3 that

• increasing the reduced dimension nc results in a lower FAR and a higher325

MDR, due to less information loss in the dimensional reduction step as
explained in Remark 4;

• by setting a larger confidence level γ, the achieved FAR decreases while
the MDR increases, which is consistent with our expectation.

Figure 5 illustrates how the FAR and MDR vary with the horizon length h and330

the degree dV . For each choice of (h, dV ), the dimension reduction step captures
99% of the total variance of the sampled data matrix of λ. In Figure 5, the FAR
remains below 5% in all cases. It is also observed that (i) the MDR becomes
higher when dV is larger than its minimal value 1; and (ii) for each fixed degree
from 1 to 4, the MDR decreases as h increases.335

To show the benefit of exploiting distributional information of uncertain
parameters, the PDF of δUA is changed from the truncated Gaussian distribution
to the uniform distribution over the same uncertainty range. Compared to
case 5 of Table 3, the same tuning parameters are applied under the uniformly
distributed δUA, then the obtained FAR 4.17% almost remains unchanged, and340

the achieved MDR increases to 5.01%. This is due to not distinguishing high
and low probability of occurrence in the uniformly distributed δUA, compared
to the truncated Gaussian distributed δUA.

xxii



Table 2: For different uncertainty ranges of δUA, minimal magnitudes of reactor temperature
sensor bias that are detected with an MDR less than 5% in 100 Monte Carlo runs. The tuning
parameters of our proposed algorithm are fixed as described in Section 6.2.

Range of δUA [−1, 1] [−5, 5] [−9, 9] [−13, 13]
(J/min·K) ×104 ×104 ×104 ×104

Minimal fault magnitude (K) 1.42 1.44 1.50 1.62

Table 3: FAR and MDR when tuning the reduced dimension nc and the confidence level γ.
The number of Gaussian components is fixed to 2. The simulated fault is a constant bias
1.4 K on the reactor temperature sensor.

Tuning Horizon Degree Reduced Confidence FAR MDR
case length dV dimension level (%) (%)

h nc for λ γ (%)

1 3 1 6 95 5.56 2.41
2 3 1 7 95 4.15 3.03
3 3 1 7 99 0.97 9.19
4 3 1 8 99 0.86 11.67

7. Conclusions

This paper presents a probabilistic SM parity relation approach for LPV345

systems with polynomial dependence on probabilistic parametric uncertainties.
A polynomially parameterized parity relation is constructed, and GMs are used
to efficiently compute uncertain propagation from stochastic uncertainties to
the residual distribution. To achieve an acceptable FAR, the consistency test
uses the residual confidence set in the form of a union of ellipsoids. Guidelines350

for tuning parameters are discussed. The proposed approach is effective for a
simulation example, which includes performance comparisons with a zonotope-
based method. A comprehensive solution to fault isolation for the considered
uncertain LPV system will be a focus of future research.
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