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Abstract

The fault detection (FD) system design aims at optimizing the trade-off between
false alarm rate (FAR) and fault detection rate (FDR) under stochastic disturbances
or uncertainties. A challenging difficulty in practice is the inexact information of
stochastic disturbance distribution, i.e., the actual distribution deviates from the one
used in the design. To address this challenge, a distributionally robust optimization
(DRO) approach that accounts for the inexact distribution information is proposed for
the parity relation based FD of stochastic discrete-time linear systems. It introduces
moment-based and entropy-based ambiguity sets to describe the inexact disturbance
distribution. Over such ambiguity sets, the FD system design for a scalar residual
maximizes the worst-case FDRwith respect to a reference fault mode, while ensuring
a predefined worst-case FAR. To address the limitation of a scalar residual, the FD
test of a vector residual is constructed with respect to a parameterized set of multiple
fault modes. The resulting FD tests can be expressed in the same structure as the cele-
brated generalized likelihood ratio test (GLRT), while only the detection threshold is
adjusted to compensate for distribution ambiguity. Moreover, the worst-case FDR in
the presence of any given fault is evaluated by solving another DRO problem. Using
a continuous stirred tank reactor example with inexact distribution information, it is
demonstrated that the proposed designs achieve desirable performance trade-off and
provide effective worst-case FDR evaluations, whilst the GLRT fails to ensure the
predefined FAR.
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1 INTRODUCTION

The importance of safety-critical systems has attracted tremendous research interests inmodel-based fault detection (FD), see1,2,3

and references therein. A typical FD system is composed of a residual generator and a residual evaluator2. The generated residual

captures the deviation between the observed system behavior and the nominal system model. Then the size of the residual is

evaluated and compared against a chosen threshold to detect latent faults. The FD system design involves determining both the

residual generator and the detection threshold. A typical residual generator is based on observers, filters or parity relations2.

The parity relation approach derives an input-output model over a sliding window by decoupling the unknown initial state with

a so-called parity vector or matrix2,4.

The desirable FD performance is a high fault detection rate (FDR) and a low false alarm rate (FAR). Generally, FDR is

increased at the cost of compromising FAR. Therefore, an optimal trade-off between FDR and FAR is preferred in the FD system

design2,5,6.

The fundamental research problem in model-based FD is to optimize the FD performance in the presence of model uncertain-

ties including external disturbances or unknown parameters. Existing robust FD techniques can be classified into two categories,

depending on the description of model uncertainties. The first category assumes unknown-but-bound uncertainties, and adopts

a deterministic worst-case approach. Inspired by robust control concepts, one worst-case approach employs system norms to

describe robustness to disturbances and sensitivity to faults. It first constructs a residual generator that minimizes a ratio between

such disturbance robustness and fault sensitivity, and then determines a detection threshold using the worst-case upper bound

of the residual norm7,8,9,10,11. Alternatively, the set-membership method exploits a set-valued observer12,13,14,15,16, parity rela-

tion17, or feasibility based model invalidation18 to perform a set-based consistency test. In these aforementioned methods, zero

FAR is ensured by accounting for the worst-case uncertainty, whilst the resulting FDR could be overly compromised. This is due

to adopting a rather conservative detection threshold or set to account for the worst-case uncertainty that occurs with vanishingly

low probability.

In the second category of robust FD techniques, model uncertainties are assumed to be stochastic. With uncertainty distri-

bution that distinguishes between low and high probability of occurrence, a much less conservative detection threshold can be

set by allowing an acceptable FAR, which results in an improved FDR. For linear systems with additive Gaussian disturbances,

a generalized likelihood ratio test (GLRT) is proposed in the scheme of parity relation or Kalman filter19,20,21. In the observer-

based FD scheme, a probabilistic relaxation of the norm-based threshold computation22,23 or FAR-constrained optimal design5,6

is proposed to exploit the probability distributions of parametric uncertainties and disturbances. Recently, the set-membership

approach has been merged with the probabilistic paradigm in24,25,26 by admitting a risk level in the set-based consistency test.
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Despite the significant progress briefly reviewed above, robust FD still poses a remarkable challenge in the integration of a

residual generator and a residual evaluator to optimize the trade-off between FAR and FDR. The main difficulty lies in construct-

ing a tractable optimization problem that quantifies how FAR and FDR depend on design parameters. Most existing literature

separately considers the residual generator design and threshold computation, which renders the overall FD performance sub-

optimal. Towards the integrated trade-off design, several results have been reported in27,28 for linear systems with additive

unknown-but-bounded disturbances. The proposed approach minimizes the set of undetectable faults under the constraint of

zero FAR. In the probabilistic paradigm, the GLRT is widely used due to its asymptotic optimality in terms of FAR and miss

detection rate19,29.

Another challenging difficulty comes from the inexactness of distribution information about stochastic uncertainties in

practice30,31. All the aforementioned probabilistic FD designs commit to an assumed or estimated distribution of stochastic

uncertainties, thus their performance could be sensitive to any deviation from the assumed or estimated distribution. With

ambiguous distribution information, FAR and FDR cannot be directly quantified, thus the integrated trade-off design becomes

even more challenging. As a recent progress towards this challenge, a probabilistic robust parity relation approach has been

proposed in32,33 by utilizing the minimum error minimax probability machine. It minimizes a weighted sum of FAR and miss

detection rate in a worst-case setting, i.e., under all stochastic disturbances with a given mean and covariance matrix. Similarly,

a distributionally robust approach is proposed in34 to ensure the predefined worst-case FAR for disturbance distributions within

a Wasserstein ball while maximizing fault sensitivity.

The above two challenges are addressed in this paper. The integrated trade-off design of the parity relation based FD is inves-

tigated for stochastic discrete-time linear systems. The inaccurate probability measure of disturbance distribution is described by

the moment-based and entropy-based ambiguity sets which can be constructed with empirical data or domain-specific knowl-

edge30,31,35. Over such ambiguity sets, a distributionally robust optimization (DRO) approach is proposed for the integrated

trade-off design and the worst-case performance evaluation. Our main contributions include:

(i) The FD system design for a scalar residual is formulated as maximizing the worst-case FDR with respect to a reference

fault mode, while being constrained by a predefined worst-case FAR, over the moment-based or entropy-based ambiguity

set. With the obtained solution, the FD test of a vector residual is constructed with respect to a parameterized set of

multiple fault modes. The derived FD test has the same structure as in the GLRT, but adjusts its threshold to compensate

for distribution ambiguity.

(ii) With the considered two types of distribution ambiguity sets, DRO-based systematic methods are proposed for threshold

computation that ensures the predefined worst-case FAR. Similarly, the worst-case FDR in the presence of any given fault
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signal is evaluated by solving associatedDROproblems. For the above threshold computation and FDR evaluation, closed-

form expressions are derived under the moment-based distribution ambiguity, while efficient bisection search algorithms

are developed to address the entropy-based distribution ambiguity.

The rest of this paper is organized as follows. In Section 2, the research motivation and problem description are stated. Then,

the DRO approach is proposed in Sections 3 and 4 to address the integrated trade-off design, parametric tuning, and worst-case

FDR evaluation subject to themoment-based and entropy-based ambiguity sets. Extensive simulation study and some concluding

remarks are given in Sections 5 and 6.

Notations: We denote by 0 and I a zero matrix and an identity matrix of appropriate dimensions, respectively. The diagonal

concatenation ofmatricesX1 andX2 is denoted by diag(X1, X2).X† represents the pseudoinverse of amatrixX. For a symmetric

matrix X, its positive definiteness and positive semidefiniteness are denoted by X > 0 and X ≥ 0, respectively. For a vector

x ∈ ℝn, its infinity norm and 2-norm are defined as ‖x‖∞ = max1≤i≤n
|xi| and ‖x‖2 =

√

x⊤x, respectively. A Gaussian distribution

with mean � and covariance Σ > 0 is represented by  (�,Σ). The standard normal cumulative distribution function (CDF) is

denoted by Φ(⋅), while the standard normal inverse CDF is denoted by Φ−1(⋅). �2n represents a central Chi-square distribution

with n degrees of freedom; and its CDF and inverse CDF are denoted by Γn(⋅) and Γ−1n (⋅), respectively. Similarly, �2n,� represents

a non-central Chi-square distribution with n degrees of freedom and the noncentrality parameter �; and its corresponding CDF

and inverse CDF are Γn,�(⋅) and Γ−1n,�(⋅), respectively.

2 PROBLEM STATEMENT

2.1 System description

Consider the following linear time-invariant system

x(k + 1) = Ax(k) + Bu(k) + Bdd(k) + Bff (k)

y(k) = Cx(k) +Du(k) +Ddd(k) +Dff (k)
(1)

where x ∈ ℝnx , u ∈ ℝnu , y ∈ ℝny , d ∈ ℝnd , and f ∈ ℝnf are the state, the control input, the measured output, the stochastic

disturbance, and the latent fault, respectively. The systemmatricesA,B,Bd ,Bf ,C ,D,Dd , andDf are known and time-invariant,

with appropriate dimensions.

Assumption 1. Without loss of generality, assume that Dd is of full row rank, and the stochastic disturbance d(k) have a zero

mean.
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From the system model (1), the stacked output equation over a time window [k − ℎ + 1, k] is

yk = Hox(k − ℎ + 1) +Huuk +Hddk +Hf fk, (2)

where

yk =

⎡

⎢

⎢

⎢

⎢

⎢
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⎣
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⎢

⎢
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⋮
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⎥

⎥

⎥

⎥

⎥
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⎢

⎢

⎢

⎢

⎢

⎢
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⋮ ⋮ ⋱ 0

CAℎ−2B CAℎ−3B ⋯ D

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3)

uk, dk, and fk are constructed similarly to yk. With the same structure as inHu,Hd andHf are defined by replacing (B,D) with

(Bd , Dd) and (Bf , Df ), respectively.

2.2 Brief review of GLRT for parity relation based FD

In this subsection, the celebrated GLRT approach is briefly reviewed, which will be compared against our proposed approaches.

Let No ∈ ℝ(nyℎ−nx)×nyℎ denote the basis matrix of the left null space of the observability matrix Ho, i.e., NoHo = 0 and

rank(No) = nyℎ − nx. Hence, a parity matrix Vr ∈ ℝ(nyℎ−nx)×nyℎ that ensures VrHo = 0 can be expressed as

Vr = W No (4)

withW being a nonsingular matrix to be designed. According to (2) and (4), the parity relation approach generates a residual

r̄k = Vr(yk −Huuk)

which is governed by

r̄k = W zk, zk = No(yk −Huuk) = H̄ddk + H̄f fk (5)

with H̄d = NoHd and H̄f = NoHf . In the above equation, zk is the primary residual, which is transformed into r̄k by the design

matrixW . We define z0,k and zf,k as below to indicate zk being generated in the fault-free and faulty cases, respectively:

z0,k = zk|fk=0 = H̄ddk,

zf,k = zk|fk≠0 = H̄ddk + H̄f fk.
(6)

In the GLRT approach, the disturbance d(k) is assumed to be a white Gaussian noise, with zero mean and covariance Qd .

Then, the covariance matrix of the stacked disturbance vector dk is

Q̄d = diag(Qd , Qd ,⋯ , Qd).

Since the stacked fault fk is deterministic, the covariance of z0,k in the fault-free case is

Σ0 = H̄dQ̄dH̄⊤
d , (7)
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which is the same as zf,k in the faulty case. Note that H̄d = NoHd has full row rank, and Σ0 is nonsingular, since both No and

Hd are of full row rank.

With the above notations, FD is seen as the hypothesis test

ℋ0 ∶ r̄k ∼ (0,W Σ0W ⊤),

ℋ1 ∶ r̄k ∼ (W H̄f fk,W Σ0W ⊤).

In the GLRT, the log-likelihood ratio is

(r̄k) = 2 ln
exp

{

− 1
2

(

r̄k −W H̄f fk
)⊤ (W Σ0W ⊤)−1

(

r̄k −W H̄f fk
)

}

exp
{

− 1
2
r̄⊤k (W Σ0W ⊤)−1r̄k

} .

Due to (5) and the nonsingularity ofW and Σ0, the above ratio can be simplified as

(r̄k) = −f⊤k H̄
⊤
fΣ

−1
0 H̄f fk + 2f⊤k H̄

⊤
fΣ

−1
0 zk,

and it is maximized when fk = (H̄⊤
fΣ

−1
0 H̄f )†H̄⊤

fΣ
−1
0 zk. The corresponding maximum log-likelihood is

∗(r̄k) = z⊤kΣ
−1
0 H̄f (H̄⊤

fΣ
−1
0 H̄f )†H̄⊤

fΣ
−1
0 zk. (8)

Note that Σ
− 1
2

0 zk in the fault-free case follows the standard normal distribution, and ∗(r̄k) can be regarded as performing an

orthogonal projection of Σ
− 1
2

0 zk onto the column space of Σ
− 1
2

0 H̄f . Thus ∗(r̄k) follows the �2mf distribution whose degrees of

freedom is

mf = rank(Σ
− 1
2

0 H̄f ). (9)

Finally, the detection decision follows

⎧

⎪

⎨

⎪

⎩

∗(r̄k) > Γ−1mf (1 − 
) ⇒ fault alarm,

∗(r̄k) ≤ Γ−1mf (1 − 
) ⇒ no fault alarm,
(10)

where Γ−1mf (⋅) represents the �
2
mf

inverse CDF, and 
 denotes the predefined FAR. It is worth noting that the obtained GLRT does

not depend on the selection of the nonsingular matrixW . The same GLRT for parity relation based FD was reported in19, with

a different derivation.

2.3 Residual distribution ambiguity

In practice, any statistical FD method including GLRT has to address the issue that the disturbance distribution and the resulting

residual distribution are typically unknown a priori. A basic idea is to estimate the primary residual covariance Σ0 from data,

such that the GLRT in (8) and (10) can be computed without knowing the disturbance covariance Q̄d . Specifically, we first

compute samples of z0,k using available fault-free input and output data according to (5), and then use the empirical covariance
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of z0,k as an estimate of Σ0. We assume the availability of a sufficient amount of fault-free data, such that the above estimate of

Σ0 is accurate. Hence Σ0 is regarded as known in the rest of this paper. The residual mean is zero according to Assumption 1.

Although the residual covariance is accurately estimated from data, the underlying residual distribution is still unknown,

which could be different from the Gaussian distribution assumed in the conventional GLRT. Moreover, a moderate data size for

an accurate covariance estimate is often insufficient for a reliable estimation of residual distribution36. Therefore, the inexactness

or ambiguity of residual distribution should be fully taken into account in a statistical FD test, which otherwise results in a poor

FD performance. For instance, the discrepancy between the assumed Gaussian distribution and the actual one can lead to an

unacceptable FAR in the conventional GLRT.

The ambiguity of probability distribution can be described by a set of possible distributions, called an ambiguity set ℙ. In this

paper, two types of ambiguity sets for the inexact distribution of the primary residual zk in (5) and (6) are constructed from data:

• The moment-based ambiguity set ℙm(�,Σ) consists of all probability distributions with mean � and covariance Σ. In this

paper, with Σ0 be estimated as the empirical covariance of the fault-free primary residual samples z0,k, the distributions

of z0,k and zf,k in (6) are assumed to belong to ℙm(0,Σ0) and ℙm(H̄f fk,Σ0) respectively, which are denoted by z0,k ∼

ℙm(0,Σ0) and zf,k ∼ ℙm(H̄f fk,Σ0).

• The entropy-based ambiguity set ℙe(P0, �) includes any distribution P whose KL divergence (i.e., negative relative

entropy) with respect to a nominal distribution P0 is less than or equal to a predefined nonnegative value �, i.e.,

ℙe(P0, �) =
{

P ∈ D|KL(P , P0) ≤ �
}

, (11)

where D denotes the set of all probability distributions, and

KL(P , P0) = ∫ log dP
dP0

dP

represents the KL divergence from P to P0. In this paper, assume z0,k ∼ ℙe(Pz0 , �) in the fault-free case, i.e., the true

distribution z0 of the fault-free primary residual z0,k satisfies KL(z0 , Pz0) ≤ �, with the nominal distribution Pz0 being

 (0,Σ0). In the faulty case, let zf and Pzf =  (H̄f fk,Σ0) represent the true distribution and nominal distribution of

the faulty primary residual, respectively. According to (6),zf (z) = z0(z− H̄f fk) and Pzf (z) = Pz0(z− H̄f fk) hold, thus

we have KL(zf , Pzf ) = KL(z0 , Pz0) ≤ �. This implies that the divergence bound � is valid for both fault-free and faulty

cases. Since the true distribution z0 is not exactly known, we determine � using the sample distribution ̂z0 of the fault-

free primary residual. Firstly, as an empirical estimate of KL(z0 , Pz0), �̂ = KL(̂z0 , Pz0) is computed via Monte-Carlo

simulation or k-nearest-neighbor methods37. Such an estimate is asymptotically normal distributed, with its bias cN and

variance �2N converging with the sample size N 37,38. Therefore, we set � = �̂ + cN + 2�N such that KL(z0 , Pz0) ≤ �

holds for the unknown true distribution z0 with a 95% confidence level.
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A distribution of any type, whether it be Gaussian, Gamma, uniform, etc., belongs to the above moment-based or entropy-

based ambiguity sets if it satisfies the associated requirements in the above definitions. It should be noted that the moment-based

ambiguity set ℙm(H̄f fk,Σ0) and the nominal distribution Pzf =  (H̄f fk,Σ0) in the entropy-based ambiguity set ℙe(Pzf , �)

show the fault effect on the residual distribution, but the FD test design does not require to know the true fault signal fk.

Remark 1. If non-negligible covariance estimation errors are present in Σ0, the underlying true residual distributions of z0,k

and zf,k are not contained in the moment-based ambiguity sets ℙm(0,Σ0) and ℙm(H̄f fk,Σ0), respectively. How to address such

covariance uncertainty in the moment-based FD test design is left to future research. However, with such non-negligible covari-

ance uncertainty, the entropy-base ambiguity sets are still applicable, as long asℙe(Pz0 , �) andℙe(Pzf , �) contain the true residual

distributions of z0,k and zf,k by adopting a suitable value of �.

In the parity relation based FD scheme, this paper addresses the trade-off design considering the above two types of distribution

ambiguity sets. Specifically, it includes the design of a parity matrix, the threshold computation that ensures a predefined worst-

case FAR, and the worst-case FDR evaluation in the presence of any given fault signal. Such a distributionally robust trade-off

design is non-trivial, since it has to cope with a set of possible distributions. In contrast, most statistical FD test designs in

literature commit to a specific distribution, thus would give a poor performance if the actual distribution becomes different from

the one adopted in the design.

3 DISTRIBUTIONALLY ROBUST DESIGN OVER MOMENT-BASED AMBIGUITY SET

In this section, a DRO approach is proposed for parity relation based FD over the moment-based ambiguity set of disturbance

distributions. It starts with a scalar residual, and then proceeds to a vector residual as a complete solution.

3.1 Distributionally robust design of a scalar test

With w being a column vector of appropriate dimension, a parity vector

v = w⊤No (12)

is used to generate a scalar residual

rk = v(yk −Huuk) = w⊤zk (13)

according to (5) and (12). In the derivations throughout this paper, the time index k in the subscript is sometimes omitted for

the sake of brevity.
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Although the occurrence of faults is unpredictable, partial knowledge about faults is often available to describe fault modes

that are of interest in a specific application. For this reason, we predefine a reference fault mode as �kfref ∈ ℝnfℎ, where fref is a

unit vector that ensures

H̄f fref ≠ 0, (14)

and the scalar �k > 0 denotes the time-varying magnitude. Such a reference fault mode specifies how the fault signal varies

over a sliding time window [k − ℎ + 1, k]. Note that no single reference fault mode can represent all possible fault scenarios.

The following derivations using one reference fault mode lay the foundation for choosing and addressing a parameterized set of

multiple reference fault modes in Section 3.2.

For a selected reference fault mode, two cases are considered:

(i) The faulty residual rk = w⊤
1 zk has a positive mean, i.e., w⊤

1 H̄f fref > 0. Accordingly, a one-sided detection test is

constructed as
⎧

⎪

⎨

⎪

⎩

w⊤
1 zk > b1 ⇒ fault alarm,

w⊤
1 zk ≤ b1 ⇒ no fault alarm,

(15)

where b1 > 0 is the detection threshold.

(ii) The faulty residual rk = w⊤
2 zk has a negative mean, i.e., w⊤

2 H̄f fref < 0. Accordingly, a one-sided detection test is

constructed as
⎧

⎪

⎨

⎪

⎩

w⊤
2 zk < b2 ⇒ fault alarm,

w⊤
2 zk ≥ b2 ⇒ no fault alarm,

(16)

where b2 < 0 is the detection threshold.

In the following, the above two one-sided tests are first designed separately, and then combined into a two-sided test.

For the one-sided test (15) under the reference fault mode �kfref, the integrated design of w1 and b1 is formulated as a DRO

problem

max
w1≠0,�1,b1

�1 (17a)

s.t. inf
z0,k∼ℙz0

Pr
{

w⊤
1 z0,k ≤ b1

}

≥ �, (17b)

inf
zf,k∼ℙzf

Pr
{

w⊤
1 zf,k ≥ b1

}

≥ �1, (17c)

w⊤
1 H̄f fref > 0, b1 > 0, 0 ≤ �1 < 1. (17d)

For the one-sided test (15), (17b) ensures the worst-case FAR less than 1 − �. Similarly, (17c) implies that the resulting FDR

is lower bounded by �1. Therefore, for the reference fault mode �kfref that satisfies w⊤
1 H̄f fref > 0, the DRO problem (17) of the

one-sided test (15) maximizes the worst-case FDR �1 while ensuring a predefined FAR 1 − �.
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In this section, the inexact distributions of z0,k and zf,k in (17) are described by the moment-based ambiguity sets ℙz0 =

ℙm(0,Σ0) and ℙzf = ℙm(H̄f�kfref,Σ0). How to cope with the distributionally robust chance constraints (17b) and (17c) is then

discussed as follows.

Lemma 1. 39,40 Assume that the distribution of a random vector � belongs to a moment-based ambiguity set ℙm(�̄,Ξ), with

Ξ > 0. For q ≠ 0, � ∈ [0, 1), and a given scalar c satisfying q⊤�̄ ≤ c, the distributionally robust chance constraint

inf
�∼ℙm(�̄,Ξ)

Pr{q⊤� ≤ c} ≥ �

is equivalent to

c − q⊤�̄ ≥ ��
√

q⊤Ξq, �� =
√

�
1 − �

. (18)

For the case q⊤�̄ > c, inf
�∼ℙm(�̄,Ξ)

Pr{q⊤� ≤ c} = 0 holds.

By applying Lemma 1, the DRO (17) can be equivalently transformed into a deterministic constrained optimization problem

max
w1≠0,�1,b1

�1 (19a)

s.t. b1 ≥ ��
√

w⊤
1Σ0w1, (19b)

− b1 +w⊤
1 H̄f�kfref ≥ ��1

√

w⊤
1Σ0w1, (19c)

w⊤
1 H̄f�kfref ≥ b1, b1 > 0, 0 ≤ �1 < 1, (19d)

with Σ0 defined in (7), �� =
√

�
1−�

and ��1 =
√

�1
1−�1

. The constraint w⊤
1 H̄f�kfref ≥ b1 in (19d) is imposed, since the right-hand

side of (19c) is nonnegative according to Lemma 1. Then, it can be derived from (19b) and (19c) that

��
√

w⊤
1Σ0w1 ≤ b1 ≤ w⊤

1 H̄f�kfref − ��1
√

w⊤
1Σ0w1,

which is further simplified as
(

�� + ��1
)

√

w⊤
1Σ0w1 ≤ w⊤

1 H̄f�kfref (20)

by eliminating b1. Since ��1 =
√

�1
1−�1

increases monotonically with �1, maximizing �1 is equivalent to maximizing ��1 .

Therefore, according to (20), the optimal solution is achieved when

��1 =
w⊤
1 H̄f�kfref

√

w⊤
1Σ0w1

− �� (21)

holds. Since � is fixed a priori, �� is then determined, and maximizing �1 is equivalent to solving

max
w1≠0

�2k
w⊤
1 H̄f freff⊤refH̄

⊤
fw1

w⊤
1Σ0w1

. (22)
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It can be further transformed into

max
w̃1≠0

w̃⊤
1Σ

− 1
2

0 H̄f freff⊤refH̄
⊤
fΣ

− 1
2

0 w̃1

w̃⊤
1 w̃1

with w̃1 = Σ
1
2
0w1 and the symmetric matrix Σ

1
2
0 being the square root of Σ0. Then, it is straightforward to derive the optimal

solution as

w̃∗
1 =

Σ
− 1
2

0 H̄f fref
√

f⊤refH̄
⊤
fΣ

−1
0 H̄f fref

, w∗
1 =

Σ−10 H̄f fref
√

f⊤refH̄
⊤
fΣ

−1
0 H̄f fref

, (23a)

b∗1 = �� =
√

�
1 − �

, (23b)

��∗1 = �k
√

f⊤refH̄
⊤
fΣ

−1
0 H̄f fref − �� , �∗1 =

�2�∗1
1 + �2�∗1

. (23c)

Required by (19c) and (23c), the condition to ensure a non-zero worst-case FDR for the fault signal fk = �kfref is

�k
√

f⊤refH̄
⊤
fΣ

−1
0 H̄f fref ≥ �� . (24)

This condition becomes different for the general fault signal fk ≠ fref, which will be further specified in (45). From (23) and (24),

it can be seen that the value of �k does not influence the parity vector w∗
1 and the threshold b∗1, but only affects the worst-case

FDR.

Similarly to the above derivations, the integrated design of w2 and b2 for the second one-sided test (16) is formulated as

max
w2≠0,�2,b2

�2

s.t. inf
z0,k∼ℙm(0,Σ0)

Pr
{

w⊤
2 z0,k ≥ b2

}

≥ �,

inf
zf,k∼ℙm(H̄f �kfref,Σ0)

Pr
{

w⊤
2 zf,k ≤ b2

}

≥ �2,

w⊤
2 H̄f fref < 0, b2 < 0, 0 ≤ �2 < 1,

and the optimal solution is

w∗
2 = −w

∗
1, b

∗
2 = −�� , �

∗
2 = �

∗
1 (25)

with w∗
1 and �

∗
1 given in (23).

The two one-sided tests given in (23) and (25) are symmetric, and can be combined into the following two-sided test

⎧

⎪

⎨

⎪

⎩

|rk| > �� ⇒ fault alarm,

|rk| ≤ �� ⇒ no fault alarm,
(26)

for the residual rk = (w∗
1)
⊤zk.
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Remark 2. From (23), it can be seen that the two-sided test (26) does not depend on the magnitude �k of the reference fault

mode since it is completely described by w∗
1 and b

∗
1. However, its worst-case FDR for �kfref is indeed related to the magnitude

�k, as indicated by �∗1 in (23c).

Remark 3. It can be also seen that the solutionw∗
1 in (23a) depends on the direction fref of the reference fault mode. If the actual

fault fk does not match with the specific fault mode, i.e., fk = �kfref, the resulting fault contribution (w∗
1)
⊤H̄f fk could be rather

small in the residual, even though the magnitude of fk is large. Therefore, the two-sided test (26) might have a poor FDR for a

fault fk ≠ �kfref. This limitation will be addressed in Section 3.2 by proposing a vector test.

Remark 4. Similarly to our scalar test in this section, the probabilistic robust parity relation approach proposed in32,33 also

introduces a reference fault mode, and copes with the same moment-based ambiguity set of distributions. However, the method

in32,33 formulates a different minimax problem that minimizes a weighted sum of FAR and miss detection rate in a worst-case

setting. The solution obtained in32,33 relies on numerical iterations, while our scalar test has the closed-form solution in (23).

Due to its dependence on the reference fault mode, the FD test derived in32,33 has the same limitation pointed out in Remark 3

for our scalar test (26).

3.2 Distributionally robust design of a vector test

As in Remark 3, the FD test of the scalar residual in Section 3.1 relies on only one reference fault mode, hence might give a poor

FDR due to the discrepancy between the actual fault and the selected reference fault mode. To address this limitation, the FD test

of a vector residual is constructed in this subsection, with respect to a parameterized family of multiple reference fault modes.

Consider multiple fault modes represented by {�k,ifref,i, i = 1, 2,⋯ , mref}, where fref,i is a unity vector and �k,i is the associated

magnitude. By solving a DRO problem in the form of (17), each fault mode �k,ifref,i is used to construct a scalar residual

rk,i = �⊤i z̃k, z̃k = Σ
− 1
2

0 zk = Σ
− 1
2

0 (H̄ddk + H̄f fk),

�i =
Σ
− 1
2

0 H̄f fref,i
√

f⊤ref,iH̄
⊤
fΣ

−1
0 H̄f fref,i

,
(27)

according to (5) and (23a), with w̃∗
1 replaced by �i. These scalar residuals form a vector residual

rk =
[

rk,1 rk,2 ⋯ rk,mref

]⊤

= Φ⊤z̃k,

Φ =
[

�1 �2 ⋯ �mref

]

.
(28)
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Before evaluating rk for FD, we first need to choose the reference fault modes {�k,ifref,i, i = 1, 2,⋯ , mref}. Let the singular

value decomposition (SVD) of Σ
− 1
2

0 H̄f be denoted by

Σ
− 1
2

0 H̄f =
[

U1 U2

]

⎡

⎢

⎢

⎢

⎣

S 0

0 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

V ⊤
1

V ⊤
2

⎤

⎥

⎥

⎥

⎦

, (29)

where S ∈ ℝmf×mf is a diagonal matrix with positive diagonal elements, and mf = rank(Σ
− 1
2

0 H̄f ) is defined in (9). In the

following, col(X) and null(X) represent the column space and left nullspace of a matrix X, respectively. Since (27) and (28)

reveal the link between the reference fault modes {fref,i}
mref
i=1 and the columns {�i}

mref
i=1 of Φ, the following requirements for

choosing these fault modes come from the necessary conditions imposed on the matrix Φ:

i) All columns of Φ in (28) are nonzero. This requires H̄f fref,i ≠ 0 according to (27). Otherwise, certain elements of the

vector residual rk are constantly zero, which is undesirable.

ii) The matrix Φ is of full column rank, i.e., the scalar elements {rk,i}
mref
i=1 of the vector residual rk are linearly independent.

This requires all reference fault modes to be linearly independent.

iii) The transformation from the normalized primary residual z̃k to the vector residual rk in the first equation of (28) should

not enlarge the set of completely undetectable faults. According to (27) and (28), the sets of completely undetectable

faults for z̃k and rk are null
(

Σ
− 1
2

0 H̄f

)

and null
(

Φ⊤Σ
− 1
2

0 H̄f

)

, respectively. Hence, the selection of reference fault modes

should ensure null
(

Φ⊤Σ
− 1
2

0 H̄f

)

= null
(

Σ
− 1
2

0 H̄f

)

= col(V2), with V2 defined in (29).

With straightforward linear algebras omitted here, it can be seen from the above requirements that the number of reference fault

modes should be mref = mf = rank
(

Σ
− 1
2

0 H̄f

)

. With these considerations, we introduce a family of fault modes parametrized

by an orthogonal matrix Ξk ∈ ℝmf×mf and a scalar �k > 0, i.e.,
[

�k,1fref,1 �k,2fref,2 ⋯ �k,mf fref,mf

]

= �kV1S−1Ξk, Ξ⊤kΞk = Imf . (30)

Since Ξk and �k can be time varying, what the expression (30) defines is not a fixed set of reference fault modes, but a

parameterized set of fault modes that may change with time.

Next, we discuss how to determine Ξk and �k for the reference fault modes defined in (30). Firstly, for any time-varying fault

signal fk, we can select Ξk and �k as in Appendix A, such that one reference fault mode �k,ifref,i in (30) exactly captures the

effect of fk on the primary residual z̃k in (27), i.e.,

Σ
− 1
2

0 H̄f�k,ifref,i = Σ
− 1
2

0 H̄f fk. (31)
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Thus this fault signal fk can be exactly addressed by using the above reference fault mode �k,ifref,i to construct the scalar residual

rk,i in (27). However, the actual fault fk is unknown, hence the values ofΞk and �k that ensure (31) cannot be explicitly computed.

Fortunately, the vector test constructed below in (38) remains invariant to any values of Ξk and �k that are specified to ensure

(31) for the time-varying fault fk, which is a desirable feature.

Thanks to the chosen fault modes in (30), {�i, i = 1,⋯ , mf} form a set of orthogonal bases, since we derive

Φ =
[

�1 �2 ⋯ �mf

]

= U1Ξk (32)

by substituting (29) and (30) into the expression of �i in (27). Following the two-sided scalar test in (26), a FD test of the vector

residual rk in (28) can be constructed by monitoring each residual component rk,i, i.e.,

⎧

⎪

⎨

⎪

⎩

∃i, |rk,i| > �� ⇒ fault alarm,

∀i, |rk,i| ≤ �� ⇒ no fault alarm,
(33)

which is compactly written as
⎧

⎪

⎨

⎪

⎩

‖

‖

rk‖‖∞ > �� ⇒ fault alarm,

‖

‖

rk‖‖∞ ≤ �� ⇒ no fault alarm.
(34)

This test (34) defines the mf -dimensional hypercube

 =
{

rk| ‖‖rk‖‖∞ ≤ ��
}

(35)

as the fault-free region.

The above derivations have a clear geometric interpretation. In (27), �i is a unit vector, and z̃k is a normalized primary

residual with its covariance being an identity matrix. Then, residual components {rk,i} can be regarded as the projection of z̃k

onto multiple orthogonal directions {�i}, and each projected variance is 1. With (28), (27), and (32), the vector residual rk is

expressed as

rk = Φ⊤z̃k = Ξ⊤kU
⊤
1 z̃k = Ξ

⊤
kU

⊤
1 Σ

− 1
2

0 zk. (36)

As the orthogonal matrix Ξk changes, the orthogonal projection directions �i rotate according to (32), thus the hypercube

described in (35) rotates accordingly. These rotating hypercubes has the inscribed ball

 =
{

rk| ‖‖rk‖‖
2
2 ≤ �2�

}

, (37)

as a new fault-free region demonstrated by a 2-dimensional example in Figure 1.
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The above geometric interpretation inspires another FD test

⎧

⎪

⎨

⎪

⎩

‖

‖

rk‖‖
2
2 > �

2
� ⇒ fault alarm,

‖

‖

rk‖‖
2
2 ≤ �2� ⇒ no fault alarm,

(38)

where ‖
‖

rk‖‖
2
2 is further expressed as

‖

‖

rk‖‖
2
2 = z̃

⊤
kU1ΓΓ

⊤U⊤
1 z̃k = z̃

⊤
kU1U

⊤
1 z̃k

= z⊤kΣ
−1
0 H̄f

(

H̄⊤
fΣ

−1
0 H̄f

)†
H̄⊤
fΣ

−1
0 zk,

(39)

using (29) and (36). It can be seen from (39) that the obtain test (38) remains invariant to the values of Ξk, although the vector

residual signal in (36) indeed depends on Ξk.

OO

krkk1 · ·®krkk1 · ·®

krkk2 · ·®krkk2 · ·®

FIGURE 1 A 2-dimensional illustration of rotating hypercubes and their inscribed ball.

It is worth noting the difference between the vector tests (34) and (38). With all possible values of Ξk, (30) is not a single set

of fault modes, but represents a parameterized family of fault mode sets. The test (34) gives a different residual evaluation as Ξk

changes, thus its FD performance dependents on Ξk. But there is no universally optimal choice of Ξk since any set of reference

fault modes cannot represent all possible fault scenarios. In contrast, the vector test (38) remains invariant with respect to the

entire family of fault mode sets parameterized by Ξk in (30). Furthermore, the vector test (38) has a larger set of detectable

faults than the test (34), since the ball  in (37) is a subset of the hypercube  in (35). Because of these benefits in the above

comparisons, only the vector test (38) will be discussed in the rest of this paper.

Compared to the scalar test (26), the vector test (38) has the following two advantages. Firstly, it copes with multiple reference

fault modes instead of considering only one reference fault mode. Secondly, it is not restricted to one set of reference fault modes,

but remains invariant with respect to a parameterized family of fault mode sets described in (30). A further comparison between

the scalar test (26) and the vector test (38) in terms of worst-case FDRs will be given at the end of Section 3.3.

It is also interesting to compare the proposed vector test (38) with the celebrated GLRT (10). The residual signals in the GLRT

(10) and the vector test (38) have different dimensions. But their residual evaluation functions turn out to be exactly the same, as



xvi Wan Y. ET AL

shown in (8) and (39). The only difference between these two FD tests lies in how the detection thresholds are determined. For

the GLRT (10), the detection threshold is computed according the assumed Gaussian distribution, and the resulting FAR might

be much higher than the predefined level 
 in the presence of distribution ambiguity. One may argue that even without knowing

any distribution information, the detection threshold can be tuned in a trial-and-error process such that the GLRT gives a low

FAR with a satisfying FDR. However, such a trial-and-error method requires training data to tune the threshold, thus still fails

to ensure a low FAR if the distribution of real-time data deviates from the data distribution in the trial-and-error process. In

contrast, our proposed approaches provide systematic procedures for threshold computation as in (44) and Algorithm 2, so that

the worst-case FAR is equal to the predefined level 
 as long as the disturbance distribution belongs to the considered ambiguity

set.

3.3 Worst-case performance analysis

For the vector test (38), the residual is generated by (36) with the parity matrix beingW = Ξ⊤kU
⊤
1 Σ

− 1
2

0 . With such a parity matrix,

we discuss in this subsection about how to choose the detection threshold �2� in the vector test (38) such that its worst-case FDR

is maximized while ensuring a predefined worst-case FAR. Note that in the following we directly determine �2� without the need

to know �.

In the fault-free case, the residual rk defined in (36) has a distribution belonging to ℙm(0, Imf ). Then, the resulting worst-case

FAR is

sup
rk∼ℙm(0,Imf )

Pr
{

‖

‖

rk‖‖
2
2 ≥ �2�

}

=
mf
�2�
, (40)

which follows the multivariate Chebyshev inequality41.

According to (27), the vector residual rk in (36) in the faulty case has a distribution belonging to ℙm(�k, Imf ), with

�k = Ξ⊤kU
⊤
1 Σ

− 1
2

0 H̄f fk. (41)

The achieved worst-case FDR is then given as follows.

Theorem 1. For the vector test (38), its worst-case FDR for a fault fk is

inf
rk∼ℙm(�k,Imf )

Pr
{

‖

‖

rk‖‖
2
2 > �

2
�

}

=

⎧

⎪

⎨

⎪

⎩

(‖�k‖2−��)
2

1+(‖�k‖2−��)
2 if ‖

‖

�k‖‖2 > �� ,

0 if ‖
‖

�k‖‖2 ≤ �� ,
(42)

with

‖

‖

�k‖‖2 =
(

f⊤k H̄
⊤
fΣ

−1
0 H̄f fk

)
1
2 . (43)

The proof is given in Appendix B.
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Given the vector test (38), threshold computation aims at fining the minimal �2� that ensures the worst-case FAR while

maximizing the worst-case FDR. For this purpose, we set the detection threshold to be

�2� =
mf



(44)

such that the worst-case FAR in (40) is equal to 
 , where 
 is the predefined level of FAR allowed in a specific application.

Next, we further compare the vector test (38) with the scalar test (26) in terms of worst-case FDRs under the same fault fk.

Following the proof of Theorem 1, it can be derived that the worst-case FDR of the scalar test (26) is

inf
rk∼ℙm(�1,k,1)

Pr{|rk|2 > �2�} =

⎧

⎪

⎨

⎪

⎩

(|�1,k|−��)2

1+(|�1,k|−��)2
if |�1,k| > �� ,

0 if |�1,k| ≤ �� ,
(45)

with

|�1,k| =
|

|

|

|

(w̃∗
1)
⊤Σ

− 1
2

0 H̄f fk
|

|

|

|

. (46)

Consider a fault signal described as fk = V1S−1�k, with V1 and S defined in (29). In this case, ‖�k‖2 in (43) and |�1,k| in (46)

are obtained as ‖�k‖2 = ‖�k‖2 and |�1,k| =
|

|

|

(w̃∗
1)
⊤U1�k

|

|

|

, respectively. According to (42), the vector test (38) produces a zero

worst-case FDR if �k lies in the bounded mf -dimensional ball ‖�k‖2 ≤ �� . In contrast, according to (45), a larger set of �k,

i.e., an unbounded strip |

|

|

(w̃∗
1)
⊤U1�k

|

|

|

≤ �� , gives a zero worst-case FDR by the scalar test (45), which implies a poorer FD

performance compared to the vector test (38).

Remark 5. With the worst-case FAR fixed as 
 , it is interesting to investigate how the worst-case FDR varies if the time window

length ℎ increases. According to (9) and (44),mf grows with ℎ, thus the detection threshold �2� needs to be increased accordingly

to give the fixed worst-case FAR 
 . From (43), it can be seen that ‖
‖

�k‖‖2 also increases with ℎ. Therefore, when fixing the worst-

case FAR and increasing ℎ, both �2� and ‖

‖

�k‖‖2 grow, and how the worst-case FDR in (42) varies depends on (‖
‖

�k‖‖2 − ��)
2

whose value is not guaranteed to grow with ℎ.

Remark 6. Themoment-based ambiguity set can be conservative due to using onlymean and covariance information.Moreover,

the worst-case probability distribution in the moment-based DRO problem (17) is generally discrete42,43, which is unrealistic in

many applications. Due to this reason, the moment-based test design might result in a poor FDR, as will be seen in the simulation

results of Section 5. Such conservatism is also a limitation of the recent FD literature leveraging the minimax probability

machine32,33, because the same mean and covariance information was used therein.
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4 DISTRIBUTIONALLY ROBUST DESIGN OVER ENTROPY-BASED AMBIGUITY SET

To address the conservatism of the moment-based design (see Remark 6), residual distributions in this section are described by

entropy-based ambiguity sets. Then, entropy-based DRO problems are solved for the FD test design and performance evaluation,

although the basic idea is the same as in Section 3.

4.1 Distributionally robust design

Similarly to Lemma 1, the following proposition is derived for the distributionally robust design over the entropy-based

distribution ambiguity.

Proposition 1. Assume that the distribution of a random vector � belongs to an entropy-based ambiguity set ℙe(P0, �). For a

given scalar c, the distributionally robust chance constraint

inf
�∼ℙe(P0,�)

Pr{q⊤� ≤ c} ≥ � (47)

is equivalent to

Pr
�∼P0

{q⊤� ≤ c} ≥ 1 − ḡ�(�) (48)

with

ḡ�(�) = sup
t>0

g�(t, �), g�(t, �) =
e−�(t + 1)1−� − 1

t
, (49)

Suppose the nominal distribution P0 is (�̄,Ξ) with Ξ > 0, then the chance constraint (48) can be further simplified as

c − q⊤�̄ ≥ $�,�

√

q⊤Ξq, (50)

where

$�,� = Φ−1(1 − ḡ�(�)), (51)

and Φ−1(⋅) represents the inverse cumulative distribution function of the standard normal distribution.

The proof is given in Appendix C. Note that the equivalent deterministic constraint (50) is in the same form as (18) in Lemma

1, except that$�,� is used in (50) instead of �� in (18).

Corollary 1. With any given � > 0 and the definitions in (49) and (51),$�,� increases monotonically with �.

The proof is given in Appendix D.

Again, the optimal design of the one-sided test (15) is considered by formulating the DRO problem (17) with respect to

the reference fault mode �kfref. Instead of using the moment-based ambiguity sets, residual distributions are now described by

the entropy-based ambiguity sets ℙz0 = ℙe(Pz0 , �) and ℙzf = ℙe(Pzf , �), where Pz0 =  (0,Σ0) and Pzf =  (H̄f�kfref,Σ0)
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represent nominal Gaussian distributions. In this case, by applying Proposition 1, the DRO problem (17) with ℙz0 = ℙe(Pz0 , �)

and ℙzf = ℙe(Pzf , �) is equivalently expressed as

max
w1≠0,�1,b1

�1

s.t. b1 ≥ $�,�

√

w⊤
1Σ0w1,

− b1 +w⊤
1 H̄f�kfref ≥ $�,�1

√

w⊤
1Σ0w1,

w⊤
1 H̄f�kfref > b1, b1 > 0, 0 ≤ �1 < 1,

(52)

with$�,� and$�,�1 defined in the same form as in (51). It is not surprising to see that the optimization problems (52) and (19)

are in the same structure, except that �� and ��1 in (19) are respectively replaced by $�,� and $�,�1 in (52). Since both $�,�1

in (52) (see Theorem 1) and ��1 in (19) monotonically increases with �1, the derivations (20)–(24) can be directly followed to

solve (52). As such, the optimal solution to (52) is achieved when

$�,�1 =
w⊤
1 H̄f�kfref

√

w⊤
1Σ0w1

−$�,�

holds, and maximizing �1 is again equivalent to solving (22). Consequently, the obtained optimal solution (w∗
1, b

∗
1, �

∗
1 ) is

expressed as

w∗
1 =

Σ−10 H̄f fref
√

f⊤refH̄
⊤
fΣ

−1
0 H̄f fref

, b∗1 = $�,� ,

$�,�∗1
= �k

√

f⊤refH̄
⊤
fΣ

−1
0 H̄f fref −$�,� .

By following the derivations in Section 3.2, it is straightforward to obtain the vector test below from the above one-sided

scalar test:
⎧

⎪

⎨

⎪

⎩

‖

‖

rk‖‖
2
2 > $

2
�,� ⇒ fault alarm

‖

‖

rk‖‖
2
2 ≤ $2

�,� ⇒ no fault alarm
(53)

with ‖

‖

rk‖‖
2
2 defined in (39). As in the previous vector test (38), the derived test (53) again has the same residual evaluation

function as in the GLRT (10), but its threshold is different to account for the entropy-based distribution ambiguity.

4.2 Worst-case performance analysis

For the entropy-based vector test (53), the residual generation and evaluation are given in (36) and (39), which are the same as

in the moment-based vector test (38). However, the detection threshold$2
�,� of the entropy-based vector test (53) has a different

functional dependence on �. In this subsection, we discuss how to evaluate the worst-case FAR and FDR with a given threshold

$2
�,� under the entropy-based distribution ambiguity.
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Following Part (i) of Lemma 2 in Appendix C, the worst-case FAR of the vector test (53) is

sup
zk∼ℙe(Pz0 ,�)

Pr
{

‖

‖

rk‖‖
2
2 > $

2
�,�

}

= min
�≥0

� ln
[


0(e1∕� − 1) + 1
]

+ ��,
(54)

where Pz0 = (0,Σ0) is the nominal Gaussian distribution in the fault-free case, Γmf (⋅) denotes the �
2
mf

CDF, � is the decision

variable to be solved, and


0 = Pr
zk∼Pz0

{

‖

‖

rk‖‖
2
2 > $

2
�,�

}

= 1 − Γmf ($
2
�,�). (55)

Note that � is the divergence bound defined in (11) to describe the entropy-based distribution ambiguity, and how to determine

� is discussed in the paragraph below (11). The second equation in (55) holds, because ‖
‖

rk‖‖
2
2 defined in (39) follows the �2mf

distribution in the fault-free case. With a given threshold$2
�,� , 
0 can be computed according to (55), then the worst-case FAR

is determined by the optimization problem (54) whose solution will be discussed later.

Similarly, the worst-case FDR of the vector test (53) under an unknown fault fk is

inf
zk∼ℙe(Pzf ,�)

Pr
{

‖

‖

rk‖‖
2
2 > $

2
�,�

}

= 1 − sup
zk∼ℙe(Pzf ,�)

{

‖

‖

rk‖‖
2
2 ≤ $2

�,�

}

= 1 − min
�≥0

{

� ln
[


f (e1∕� − 1) + 1
]

+ ��
}

(56)

where Pzf =  (H̄f fk,Σ0) is the nominal Gaussian distribution in the faulty case, Γmf ,�(⋅) denotes the non-central �
2
mf ,�

CDF

with � = f⊤k H̄
⊤
fΣ

−1
0 H̄f fk, and


f = Pr
zk∼Pzf

{

‖

‖

rk‖‖
2
2 ≤ $2

�,�

}

= Γmf ,�($
2
�,�). (57)

For a given fault fk and a given threshold $2
�,� , 
f can be computed according to (57), and the worst-case FDR is determined

by the optimization problem (56).

It can be seen that computing the worst-case FAR in (54) and the worst-case FDR in (56) requires solving the same min-

imization problem except that 
0 and 
f take different values. Thus only the minimization problem in (54) is discussed next.

Firstly, � = 0 is excluded, because the objective function tends to 1 as � approaches zero, and this makes no sense for computing

FAR or FDR. Then, inspired by44,31, a bisection search algorithm in the case of � > 0 is proposed according to the analysis in

Appendix E, and its details are presented in Algorithm 1. The procedure for computing the worst-case FDR with the given fault

fk and threshold$2
�,� is similar to Algorithm 1, thus is omitted.
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Algorithm 1Worst-case FAR evaluation given the threshold$2
�,� for the test (53)

Compute 
0 = 1 − Γmf ($
2
�,�) according to (55).

Initialization for solving (54): �l = 
0e� , �u = 1.
while �u − �l > & (& is a predefined small positive value such as 10−6) do

Compute �̃ = �l+�u
2

, t∗ = max
{

0,
(

�̃

0e�

)
1
1−�̃ − 1

}

, and  ̄ = e−�(t∗ + 1)�̃ − 
0t∗ − 1.
if  ̄ > 0 then update �u = �̃
else if  ̄ < 0 then update �l = �̃
else update �l = �u = �̃, and return.
end if

end while
Output �̃ as the worst-case FAR.

4.3 Parameter tuning

For the moment-based vector test (38), the threshold �2� is determined by setting � = mf
mf+


, as detailed in Section 3.3. However,

for the entropy-based vector test (53), we do not have a closed-form expression for determining the threshold$2
�,� , but resort to

a bisection search algorithm (Algorithm 2) for the threshold computation.

For a fixed �, the FAR-related optimization problem (54) is leveraged to determine the minimal threshold $2
�,� that ensures

the predefined worst-case FAR 
 . The basic idea follows two steps. Firstly, find 
∗0 with the procedure described below, such

that the worst-case FAR in (54) with 
0 = 
∗0 is 
 . Secondly, according to (55), the threshold $2
�,� is set to Γ

−1
mf
(1 − 
∗0 ). Note

that � is not explicitly needed here for computing the threshold$2
�,� .

In the first step, we find 
∗0 such that

min
�≥0

� ln
[


∗0 (e
1∕� − 1) + 1

]

+ �� = 
,

where the left-hand side is the worst-case FAR in (54) with 
0 = 
∗0 . For this purpose, we need to further analyze the associated

optimization problem in (54). On one hand, the worst-case FAR 
 (i.e., the minimal objective function of (54)) monotonically

increases with 
0, which can be proved by following the proof of Theorem 1. On the other hand, the inequality

sup
zk∼ℙe(Pz0 ,�)

Pr
{

‖

‖

rk‖‖
2
2 > $

2
�,�

}

= min
�≥0

� ln
[


0(e1∕� − 1) + 1
]

+ �� ≤ 


implies that 
0 is upper-bounded as


0 = Pr
zk∼Pz0

{

‖

‖

rk‖‖
2
2 > $

2
�,�

}

≤ sup
t>0

e−�(t + 1)
 − 1
t

(58)

according to Part (ii) of Lemma 2 in Appendix C. Therefore, the worst-case FAR achieves the predefined level 
 at the upper

bound of 
0 in (58), which implies


∗0 = sup
t>0

e−�(t + 1)
 − 1
t

. (59)
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Similarly to solving (54), a bisection search algorithm for solving (59) is presented in Algorithm 2, according to the analysis in

Appendix F.

Algorithm 2 Threshold computation that ensures the worst-case FAR 
 for the test (53)

Initialization for solving (59): 
l = 0, 
u =
{


e−� if 
e−� < 1
1 if 
e−� ≥ 1 .

while 
u − 
l > & (& is a predefined small positive value such as 10−6) do

Compute 
̃ = 
l+
u
2

, t∗ =
(




̃e�

)
1
1−
 − 1 and '̄ = e−�(t∗ + 1)
 − 1 − 
̃ t∗.

if '̄ > 0 then update 
l = 
̃
else if '̄ < 0 then update 
u = 
̃
else update 
l = 
u = 
̃ , and return
end if

end while
Set 
∗0 = 
̃ , and compute the threshold$2

�,� = Γ
−1
mf
(1 − 
∗0 ).

5 SIMULATION STUDY

In this section, a well-mixed continuous stirred tank reactor (CSTR) is considered. It includes an exothermic reaction A→B,

where A is the reactant species, and B is the desired product. The reactant A is fed to the reactor with a flow rate F , concentration

CAf, and temperature TAf. In the equipped cooling jacket, a cooling stream with temperature Tcf flows at a rate Fc . The process

dynamics is described by45

ĊA(t) =
F
V

(

CAf − CA(t)
)

− k exp
(

−E
RT (t)

)

CA(t) +w1(t),

ĊB(t) = −
F
V
CB(t) + k exp

(

−E
RT (t)

)

CA(t) +w2(t),

Ṫ (t) =F
V

(

TAf − T (t)
)

+ −ΔH
�cp

k exp
(

−E
RT (t)

)

CA(t)

− UA
�cpV

(

T (t) − Tc(t)
)

+w3(t),

Ṫc(t) =
Fc
Vc

(

Tcf (t) − Tc(t)
)

+ UA
�ccpcVc

(

T (t) − Tc(t)
)

+w4(t)

(60)

where the species A concentration CA, species B concentration CB, reactor temperature T , and cooling jacket temperature Tc

constitute the system states, and the feed concentration CAf , feed temperature TAf , and cooling stream temperature TCf are

the system inputs. Process disturbances w1(t), w2(t), w3(t), and w4(t) are zero-mean Gaussian white noises with variances

3 × 10−5(mol/L)2 , 3 × 10−5(mol/L)2, 6 × 10−4K2, and 6 × 10−4K2, respectively. System parameters in (60) are described in

Table 1. In this section, “K” represents the unit of Kelvin temperature.

Let the nonlinear system (60) be operated around a stead-state point described as C0Af = 4 mol/L, T 0Af = T 0Cf = 360 K,

C0A = 3.8506 mol/L, C0B = 0.1494 mol/L, T 0 = 363.2828 K, T 0c = 362.6622 K. Around this steady-state point, linearization
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TABLE 1 System parameters

Parameter Description Value Unit

F Inlet flow rate 83.3 L/min
Fc Flow rate of cooling stream 50 L/min
V Tank volume 1000 L
Vc Volume of cooling jacket 100 L
ΔH Enthalpy of A→B −5 × 104 J/mol
UA Heat transfer coefficient 9.01 × 105 J/(min⋅K)
k Pre-exponential constant of A→B 5 × 104 min−1

E Activation energy A→ B 5 × 104 J/mol
R Gas constant 8.314 J/(min⋅K)
� Fluid density in reactor 1000 g/L
cp Fluid heat capacity in reactor 0.231 J/(g⋅K)
�c Fluid density in cooling jacket 1000 g/L
cpc Fluid heat capacity in cooling jacket 4.2 J/(g⋅K)

and discretization (60) with a sampling period ts = 0.1s yields the linearized discrete-time linear system (1), with

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.9914 0 0 0

0.0003 0.9917 0 0

0.0585 0 0.7096 0.2858

0.0061 0 0.1572 0.7986

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.0083 0 0

0 0 0

0.0003 0.0070 0.0079

0 0.0007 0.0445

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

In this simulation example, CB, T , and Tc are measurable, hence the matrices C and D in (1) are C =
[

03×1 I3

]

and D =

03×3, respectively. The measurement noises in the sensors of CB, T , and Tc are zero-mean white Gaussian with variances 3 ×

10−4(mol/L)2, 6 × 10−3K2, 6 × 10−3K2, respectively. Let
[

w⊤ v⊤
]⊤

be the disturbance d in the linearized system (1), with

w ∈ ℝ4 and v ∈ ℝ3 respectively representing the discrete-time process noises and the measurement noises. Then, the associated

matrices Bd and Dd in (1) are Bd =
[

I4 04×3

]

and Dd =
[

03×4 I3

]

.

The following two fault scenarios are included:

• A drift sensor fault on the reactor temperature T :

Bf = 04×1 and Df =
[

0 1 0
]⊤

in (1),

f (k) =

⎧

⎪

⎨

⎪

⎩

0 0 ≤ k ≤ 300

0.005(k − 300) k > 300;
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• An oscillatory actuator fault on the cooling stream temperature TCf:

Bf =
[

0 0 0.0079 0.0445
]⊤

and Df = 03×1 in (1),

f (k) =

⎧

⎪

⎨

⎪

⎩

0 0 ≤ k ≤ 300

0.002k sin �k
50
− 3 k > 300.

For performance comparisons, the following four parity relation based FD methods are implemented using the same parity

order ℎ = 7, the predefined FAR 
 = 10%, and the primary residual zk in (5):

• the GLRT (8)–(10): its residual evaluation ∗(r̄k) is computed as in (8) using the primary residual zk, and its threshold is

set to Γ−1mf (1 − 
) defined in (10) with mf = rank(Σ
− 1
2

0 H̄f ) = 7 in (9).

• the scalar test (26) using the moment-based DRO approach: with the reference fault mode �kfref selected to be in the

direction

fref =
[

0.3657 0.3697 0.3738 0.3779 0.3819 0.3860 0.3900
]⊤

, (61)

the parity vector w∗
1 is computed according to (23), the residual signal is generated as rk = (w∗

1)
⊤zk, and the associated

threshold is determined as �2� = 1∕
 = 10 according to (44);

• the vector test (38) using the moment-based DRO approach: for the ambiguity sets ℙm(0,Σ0) and ℙm(H̄f fk,Σ0), Σ0 is

the 17 × 17 empirical covariance matrix of the fault-free primary residual, whose value can be determined according

to procedures described in Section 2.3 but not given in detail here due to space limit; the residual evaluation ‖

‖

rk‖‖
2
2

is computed as in (39) from the primary residual zk, and its threshold is �2� = mf∕
 = 70.00 according to (44) and

mf = rank(Σ
− 1
2

0 H̄f ) = 7 in (9); note that the vector test (38) turns out to be independent of the parametrized set of

reference fault modes in (30);

• the vector test (53) using the entropy-based DRO approach: the residual evaluation ‖

‖

rk‖‖
2
2 still follows (39); the bound

� = 0.30 for the ambiguity sets ℙe(Pz0 , �) and ℙe(Pzf , �) is determined by the KL divergence between the empirical

distribution of the fault-free primary residual zk and the nominal distribution Pz0 =  (0,Σ0), with detailed procedures

in Section 2.3; then, its threshold$2
�=0.30,� = 22.65 is computed using Algorithm 2.

With the considered fault scenarios in one simulation run, the normalized residual evaluations are depicted in Figure 2, where

all detection thresholds of the above four methods are normalized to unity. Since the actual disturbance distribution deviates from

the assumed Gaussian distribution due to linearization and discretization errors, the FARs of the GLRT (8)–(10) are significantly

higher than the predefined level 
 = 10%, i.e., 32.08% in the sensor fault scenario and 21.50% in the actuator fault scenario.

In contrast, the vector test (53) using the entropy-based DRO approach has only 2.73% FAR in the sensor fault scenario and
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zero FAR in the actuator fault. As expected, the vector test (38) using the moment-based DRO approach results in the most

conservative threshold, and gets the lowest FDR among the implemented FD tests.
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FIGURE 2 Normalized residual evaluation of one simulation run in the considered fault scenarios.

Next, we illustrate how the selection of reference fault modes affects the FD performance by comparing the scalar test (26)

with the vector test (38). For this purpose, we consider the temperature sensor fault

fk =
[

0.450 0.455 0.460 0.465 0.470 0.475 0.480
]⊤

(62)

over the time window [390, 396]. The scalar test (26) is implemented using two different reference fault modes: 1) the direction

of the reference fault mode is fref in (61), which is in the same direction as the true sensor fault signal in (62); 2) the direction of

the reference fault mode is

fref =
[

−0.3657 0.3697 −0.3738 0.3779 −0.3819 0.3860 −0.3900
]⊤

, (63)

which is almost orthogonal to the true sensor fault signal in (62). The vector test (38) using the moment-based DRO approach

has the same parameter setting as given before. In Figure 3, the actual FARs and FDRs of the implemented FD methods are

plotted against the predefined FARs 
 whose 34 different values are equally spaced within the interval (0, 1). Each dot on the

curves of Figure 3 is determined by 4000 fault-free or faulty Monte Carlo simulations. For all implemented methods, the actual

FARs remain below the predefined FAR level 
 . The scalar test (26) achieves the highest FDRs only when its reference fault

mode in (61) happens to perfectly match with the direction of the true fault signal in (62). However, it also gives the poorest

FDRs when using the improper reference fault mode in (63). Note that there is no guarantee that one single reference fault mode

remains close to the direction of a time-varying fault signal, which is the major limitation of the scalar test (26). In contrast, the
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vector test (38) gives 99.03% FDR at the cost of 3.91% FAR in Figure 3(b), and it is independent of the parameterized set of

reference fault modes in (30).

Similarly to Figure 3, Figure 4 compares the GLRT and the two vector tests using the moment-based and entropy-based DRO

approaches. The same temperature sensor fault signal in (62) over the time window [390, 396] is considered again. For the vector

test (53) using the entropy-based DRO approach, � = 0.3 and � = 0.7 are both implemented to illustrate the effect of � on the

FD performance.
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FIGURE 3 FDRs and FARs of scalar and vector tests using moment-based DRO approaches.
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FIGURE 4 FDRs and FARs of different vector tests under different predefined FARs.
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As seen from Figure 4, the GRLT (8)–(10) has its actual FARs all higher than the predefined FARs, although it achieves the

highest FDRs. This is again due to ambiguous disturbance distribution caused by linearization and discretization errors. These

errors are compensated by the ambiguity set in both DRO approaches, hence FARs of these two approaches are all lower than

the predefined FARs. Due to the conservatism of the moment-based ambiguity set explained in Remark 6, the moment-based

DRO approach needs to use a conservative threshold to ensure the predefined FAR for the worst-case distribution. As a result, its

actual FAR is much lower than the predefined worst-case FAR, but its achieved FAR is the poorest compared to other methods.

The performance of the entropy-based DRO approach depends on the value of �. It achieves a better performance tradeoff by

setting � = 0.3, because the actual FARs are closer to the predefined worst-case FARs, as illustrated by the dotted orange curve

and the dashed black line in Figure 4(a).

With different values of the reactor temperature sensor bias, the theoretical worst-case FDRs of the vector tests using two

DRO approaches are compared against their actual FDRs in 2000 Monte-Carlo simulations. The predefined worst-case FAR 


is still set to 10%. Then, the detection threshold for the moment-based vector test (38) is 70.00, while the entropy-based vector

test (53) has its detection threshold set to 22.65 or 32.31 for the divergence parameter � = 0.3 or � = 0.7, respectively. The

theoretical worst-case FDRs are computed by solving (56) with similar procedures in Algorithm 1. As depicted in Figure 5,

for a fault amplitude less than 0.8, the moment-based DRO approach achieves much lower FDRs than the entropy-based DRO

approach. As expected, there exists a gap between the theoretical worst-case FDRs and the actual FDRs. This gap in the moment-

based DRO approach is larger than in the entropy-based DRO approach. Moreover, this gap in the entropy-based DRO approach

becomes narrower as � reduces from 0.7 to 0.3.
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FIGURE 5 FDRs for the amplitude of fault varying from -1.4 to 1.4.
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6 CONCLUSIONS

This paper considers the parity relation based FD problem for linear systems in the presence of stochastic disturbances whose

distribution information is ambiguous. With the moment-based and entropy-based distribution ambiguity sets, a DRO approach

is proposed for the trade-off design. The obtained FD tests have the same structure as the conventional GLRT, and compensate for

the distribution ambiguity by their detection thresholds. By solving associated DRO problems, we develop systematic methods

for the threshold computation that ensures a predefined worst-case FAR, and for the worst-case FDR evaluation in the presence

of any given fault signal. With simulation results on a CSTR example, it is shown that the GLRT fails to ensure a low FAR due

to not addressing ambiguous distribution information. In contrast, our proposed entropy-based DRO design achieves desirable

trade-off between FAR and FDR, and provides effective worst-case performance evaluation. However, the moment-based DRO

design gives a poor performance trade-off due to the conservatism of moment-based distribution ambiguity description.
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APPENDIX

A SELECTION OF ΞK AND �K SUCH THAT EQUATION (31) HOLDS

By extracting the ith column from both sides of (30), we have �k,ifref,i = �kV1S−1Ξk,i, where Ξk,i is the ith column of Ξk.

Combining this equation with (29), (31) is rewritten as

Σ
− 1
2

0 H̄f�k,ifref,i = �kU1Ξk,i = U1SV ⊤
1 fk. (A1)

Since Ξk,i is a column vector within the orthogonal matrix Ξk, Ξk,i is also a unity vector. Then, it can be derived from (A1) that

�k =
‖

‖

‖

SV ⊤
1 fk

‖

‖

‖2
and Ξk,i = SV ⊤

1 fk∕�k. Given the above Ξk,i, the other columns of Ξk can be arbitrary chosen as long as Ξk is

an orthogonal matrix.

B PROOF OF THEOREM 1

Using Theorem 6.1 in42, the worst-case FDR of the test (38) is expressed as

1 − sup
rk∼ℙm(�k,Inr )

Pr
{

‖

‖

rk‖‖
2
2 ≤ �2�

}

= 1 − 1
1 + � (B2)

with

� = inf
‖r‖22≤�2�

(

r − �k
)⊤ (r − �k

)

.

Geometrically, � is the distance from �k to the ball  =
{

rk| ‖‖rk‖‖
2
2 ≤ �2�

}

defined in (37). For �k ∈ , such a distance is zero

since the optimal solution is exactly r∗ = �k. For �k ∉ , the optimal solution lies on the surface of , hence it is obtained as

r∗ =
���k
‖

‖

�k‖‖2
and �∗ = (‖

‖

�k‖‖2 − ��)
2

by using the method of Lagrangian multipliers. After substituting the above solution into (B2), the worst-case FDR in (42) is

obtained. Using (29), (30), and (41), (43) can be derived.
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C PROOF OF PROPOSITION 1

For the sake of self-containedness, we include the following lemma on distributionally robust chance constraint over the entropy-

based distribution ambiguity, whose detailed proof is referred to44 and31. It is directly applied to prove Proposition 1.

Lemma 2. 44,31 Assume that the distribution of a random vector � belongs to an entropy-based ambiguity set ℙe(P0, �). Let

H(�, �) denote a function depending on the random vector � and a fixed parameter �.

(i) The DRO problem sup�∼ℙe(P0,�) {H(�, �) > 0} is equivalent to the deterministic optimization problem

min
�≥0

� ln
[

ℎ�(e1∕� − 1) + 1
]

+ �� (C3)

with

ℎ� = Pr
�∼P0

{H(�, �) > 0} .

(ii) The distributionally robust chance constraint

sup
�∼ℙe(P0,�)

Pr {H(�, �) > 0} ≤ � (C4)

is equivalent to the chance constraint

Pr
�∼P0

{H(�, �) > 0} ≤ �̄ (C5)

with t = e1∕� − 1 > 0 and

�̄ = sup
t>0

e−�(t + 1)� − 1
t

< �. (C6)

In Part (ii) of Lemma 2, the distributionally robust chance constraint (C4) is equivalently transformed into the standard chance

constraint (C5) with respect to the nominal distribution P0. Note that compared to the risk level � in (C4), the risk level �̄ in (C5)

is more restrictive to compensate for distribution ambiguity, according to (C6).

In Proposition 1, (48) and (49) are the result of directly applying Part (ii) of Lemma 2, with the general constraintH(�, �) > 0

replaced by q⊤� ≤ c. And (50) is obtained since

Pr
�∼P0

{

q⊤� ≤ c
}

= Pr
�∼P0

{

q⊤� − q⊤�̄
√

q⊤Ξq
≤ c − q⊤�̄

√

q⊤Ξq

}

= Φ

(

c − q⊤�̄
√

q⊤Ξq

)

.
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D PROOF OF COROLLARY 1

It is obvious that the inverse cumulative distribution function Φ−1(1 − ḡ�(�)) decreases monotonically with ḡ�(�). Next, we just

need to prove that ḡ�(�) has a monotone-decreasing dependence on � by showing that

ḡ�(�1) ≥ ḡ�(�2) holds for �1 ≤ �2. (D7)

Assume that the supremums supt>0 g�(t, �1) and supt>0 g�(t, �2) are attained at t∗1 and t
∗
2, respectively. Then, it is straightforward

that

ḡ�(�1) = sup
t>0

g�(t, �1) ≥ g�(t∗2, �1) (D8)

holds. Also, we have

g�(t∗2, �1) ≥ g�(t∗2, �2) = ḡ�(�2), (D9)

since g�(t, �) decreases monotonically with � according to its definition (51). Combining (D8) and (D9) results in (D7).

E BISECTION SEARCH ALGORITHM FOR SOLVING EQUATION (54)

With � and 
0 given, solving (54) relies on checking whether the set

�̃ =
{

� ||
|

� ln
[


0(e1∕� − 1) + 1
]

+ �� ≤ �̃, � > 0
}

(E10)

is empty for a given �̃ ∈ (0, 1). If �̃ is empty, then the optimal solution �∗ is larger than �̃ and the algorithm needs to search

above �̃. Otherwise, the algorithm needs to search below �̃.

Define t = e1∕� − 1 > 0 and

 (t, �̃) = e−�(t + 1)�̃ − 
0t − 1. (E11)

For any fixed �̃ ∈ (0, 1), the function  (t, �̃) over t > 0 is concave, and its supremum

 ̄(�̃) = sup
t>0

 (t, �̃) (E12)

is attained at

t∗(�̃) = max

{

0,
(

�̃

0e�

)
1
1−�̃

− 1

}

. (E13)

With these notations above, checking non-emptiness of �̃ is equivalent to checking the non-emptiness of

�̃ = {t | (t, �̃) ≥ 0, t > 0} , (E14)
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which can be further transformed into checking whether

 ̄(�̃) ≥ 0 and t∗(�̃) > 0 (E15)

hold, with  ̄(�̃) and t∗(�̃) defined in (E12) and (E13). Note that t∗(�̃) = 0 is infeasible, because in this case  ̄(�̃) = e−� − 1 < 0

holds for � > 0.

For a selected value �̃, if  ̄(�̃) > 0 holds, then the set �̃ in (E14) is non-empty, and the minimal value �∗ is below �̃. If

 ̄(�̃) = 0, then �∗ is equal to �̃. Otherwise, the set �̃ in (E14) is empty, and �∗ is above �̃.

Actually, the bisection search of �̃ does not need to consider the entire interval (0, 1). It will be proved in the following that

the feasible interval for �̃ is (
0e� , 1). Then it is sufficient to search with this smaller interval to further speed up computation.

Proof to show the feasible interval of �̃: The analysis for (E15) reveals the infeasibility of t∗(�̃) = 0. Hence
(

�̃

0e�

)
1
1−�̃ − 1 ≤ 0

is not allowed. For this reason, 
0e� < 1 has to be satisfied, and a feasible �̃ must lie within the interval (
0e� , 1) so that
(

�̃

0e�

)
1
1−�̃ − 1 > 0 holds.

F BISECTION ALGORITHM FOR SOLVING EQUATION (59)

The basic idea is to check whether the set


̃ =
{

t
|

|

|

|

e−�(t + 1)
 − 1
t

> 
̃
}

= {t |e−�(t + 1)
 − 1 − 
̃ t > 0}

is empty for a given 
̃ . This is equivalent to checking the non-emptiness of �̃ , according to the definitions (E11) and (E14).

Similarly to the analysis in the last two paragraph of Appendix E, the feasible interval of 
̃ is (0, 
e−�) if 
e−� < 1; and otherwise,

this feasible interval is (0, 1).
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