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Recursive Least Squares Identification with Variable-Direction Forgetting
via Oblique Projection Decomposition

Kun Zhu, Chengpu Yu, Yiming Wan

Abstract—In this paper, a new recursive least squares iden-
tification algorithm with variable-direction forgetting (VDF) is
proposed for multi-output systems. The objective is to enhance
parameter estimation performance under non-persistent exci-
tation. The proposed algorithm performs oblique projection
decomposition of the information matrix, such that forgetting is
applied only to directions where new information is received. The-
oretical proofs show that even without persistent excitation, the
information matrix remains lower and upper bounded, and the
estimation error variance converges to be within a finite bound.
Moreover, detailed analysis is made to compare with a recently
reported VDF algorithm that exploits eigenvalue decomposition
(VDF-ED). It is revealed that under non-persistent excitation,
part of the forgotten subspace in the VDF-ED algorithm could
discount old information without receiving new data, which could
produce a more ill-conditioned information matrix than our
proposed algorithm. Numerical simulation results demonstrate
the efficacy and advantage of our proposed algorithm over this
recent VDF-ED algorithm.

Index Terms—Recursive least squares, non-persistent excita-
tion, variable-direction forgetting, oblique projection.

I. INTRODUCTION

RESEARCH on system identification dates back to the
1960s, but is still very active due to its critical impor-

tance in systems and controls [1], [2]. For online parameter
estimation, recursive least squares (RLS) identification is one
of the most well-known methods [3]. To enhance tracking
capability of time-varying parameters, exponential forgetting
(EF) was initially established for RLS identification of single-
output (SO) systems, which discounts old information with
a constant forgetting factor [3]. Various RLS extensions with
or without EF have been proposed for multiple-output (MO)
systems that are ubiquitous in industrial applications [4]–[11].
The parameter errors given by the EF algorithms exponentially
converge if the identification data is persistently exciting [12],
[13]. However, the condition of persistent excitation cannot be
always satisfied in practice. With non-persistent excitation, the
EF algorithm discounts old data without receiving sufficient
new information. As a result, the undesirable estimator windup
phenomenon occurs, i.e., the RLS gain grows unbounded, and
the obtained estimates become highly sensitive to noise.

The above limitation of EF in the absence of persistent ex-
citation is attributed to discounting old information uniformly
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over time and in the parameter space. To cope with this issue,
various modified forgetting strategies have been reported in the
literature, which can be classified into two categories: variable-
rate forgetting (VRF) and variable-direction forgetting (VDF).
The category of VRF algorithms adjusts a variable forgetting
factor to discount old information non-uniformly over time.
For example, the forgetting factor is updated according to the
prediction error [14], [15] by minimizing the mean square
error [16] or in accordance with Bayesian decision-making
[17]. Convergence and consistency of a general VRF algorithm
was recently investigated in [18]. However, data excitation in
practice is not uniformly distributed over space, but might
be restricted to certain directions of the parameter space
over a period of time. In this case, the VRF algorithms still
gradually lose information in the non-excited directions, which
would lead to ill-conditioned matrix inversion and increased
estimation errors [19]. This problem is addressed by the VDF
algorithms in [19]–[21]. Specifically, forgetting is applied only
to directions that are excited by the online data. By doing
so, estimator windup does not occur under non-persistent
excitation, because information in the non-excited subspace
is retained.

The VRF and VDF algorithms were initially proposed for
SO systems. Considering MO systems, the VRF algorithm is
still applicable since it simply applies uniform forgetting to the
entire parameter space [18], [22]. However, the extension of
VDF algorithms to cope with MO systems is not straightfor-
ward, since the forgotten subspace varies with the online data.
As the latest progress in this line of research, a VDF algorithm
via eigenvalue decomposition (VDF-ED) has been proposed in
[23], [24] for MO systems. The basic idea is to apply forgetting
to the eigendirections of the old information matrix where new
information is received. Moreover, this VDF-ED algorithm is
combined with a variable forgetting factor to further enhance
its tracking performance [24].

In this paper, a new VDF algorithm using oblique projection
decomposition (VDF-OPD) is proposed for MO systems under
non-persistent excitation. Oblique projection is exploited to
decompose the old information matrix into a forgotten part
and a retained part. This proposed VDF-OPD algorithm has
three main contributions:

i) The proposed decomposition of the information matrix
has a clear geometrical interpretation based on oblique
projection. It reduces to the decomposition described in
[21] when the considered system has a scalar output.

ii) A detailed comparison with the recently proposed VDF-
ED algorithm in [23] is provided. The forgotten sub-
space in the VDF-ED algorithm has a higher dimen-
sion than that in our VDF-OPD algorithm. Under non-
persistent excitation, the VDF-ED algorithm produces a
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more ill-conditioned information matrix, because part of
its forgotten subspace discounts old information without
receiving new data.

iii) Boundedness of the information matrix and convergence
of the estimation error variance of our VDF-OPD algo-
rithm are proved under non-persistent excitation.

The rest of this paper is organized as follows. Firstly,
Section II states the problem of RLS identification of MO
systems under non-persistent excitation. Our proposed VDF-
OPD algorithm is presented in Section III, and compared
with the VDF-EM algorithm in Section IV. Then, Section
V gives the convergence analysis. Finally, simulation results
and concluding remarks are provided in Sections VI and VII,
respectively.

Notation: The 2-norm of a vector x is denoted by ‖x‖. For
a matrix X , Range(X), Null(X), ‖X‖2, and X† represent its
range space, nullspace, induced 2-norm, and Moore-Penrose
inverse, respectively. For a square matrix X , tr(X) denotes
its trace, and λmin(X) and λmax(X) represent its minimal
and maximal eigenvalues, respectively. For a symmetric matrix
X , the positive definiteness and positive semi-definiteness are
denoted by X > 0 and X ≥ 0, respectively. Let In represent
an identity matrix of dimension n. The vectorization operator
vec(X) creates a column vector by stacking the columns
vectors of a matrix X . For matrices X and Y , diag(X,Y )
represents a block-diagonal matrix whose diagonal blocks are
X and Y .

II. PROBLEM STATEMENT

Consider the following MO system [25]

Ak(z−1)yk = Bk(z−1)uk + vk, (1)

where yk ∈ Rmy denotes the measured output vector at time
instant k, uk ∈ Rmu is the system input vector, and vk ∈ Rmy

represents the stochastic noise vector with zero mean. With
the unit backward shift operator z−1 (i.e., z−1yk = yk−1),
Ak(z−1) and Bk(z−1) are the polynomial matrices defined as

Ak(z−1) = Imy
+A1,kz

−1 +A2,kz
−2 + · · ·+Ana,kz

−na ,

Bk(z−1) = B0,k +B1,kz
−1 +B2,kz

−2 + · · ·+Bnb,kz
−nb .

which include slowly time-varying parameters in their coeffi-
cient matrices. Define

Θk =
[
A1,k · · · Ana,k B0,k · · · Bnb,k

]>
,

ϕk =
[
−yk−1> · · · −yk−na

> u>k · · · u>k−nb

]>
,

n1 = namy + (nb + 1)mu,

with Θk ∈ Rn1×my , ϕk ∈ Rn1 . Then, the system model (1)
is written into

yk = Θ>k ϕk + vk. (2)

With the property of Kronecker product [26], i.e.,
vec(Θ>k ϕk) = (ϕ>k ⊗ Imy )vec(Θ>k ), (2) can be further
expressed as

yk = Φ>k θk + vk, (3)

where the parameter vector θk and the regressor matrix Φk
are defined as

θk = vec(Θ>k ) ∈ Rn, n = n1my,

Φk = (ϕ>k ⊗ Imy
)> ∈ Rn×my .

(4)

To estimate the parameter vector θk in (3), the standard RLS
algorithm with EF is [22]

θ̂k = θ̂k−1 +R−1k Φk(yk − Φ>k θ̂k), (5a)

Rk = µkRk−1 + ΦkΦ>k , (5b)

where θ̂k is the parameter estimate, Rk ∈ Rn×n is called the
information matrix, and µk ∈ (0, 1) is the forgetting factor.

The above EF algorithm works well if the regressor se-
quence {Φk} is persistently exciting [12], [13], i.e., there exist
α > 0 and a positive integer s0 such that

∑k+s0
k ΦkΦ>k ≥ αIn

holds for all k > 0. The persistently exciting data contains
rich new information to compensate for discounted old data.
However, under non-persistent excitation, the old information
in Rk could be discounted continuously without being fully
replaced by any new information from Φk. As a result, some
eigenvalues of Rk tend to be zero, and the corresponding gain
R−1k Φk becomes unbounded, i.e., the undesirable estimator
windup occurs. In this situation, the obtained parameter esti-
mates become highly sensitive to noise.

To address the estimator windup under non-persistent ex-
citation, various VDF strategies have been reported in the
literature for SO systems [19]–[21]. However, these VDF
algorithms consider only a regressor vector, thus cannot cope
with the regressor matrix Φk for MO systems. In this paper, we
propose the VDF-OPD algorithm for MO systems, analyze its
benefit over the VDF-ED algorithm recently reported in [23],
and investigate its convergence properties.

III. RLS WITH VARIABLE-DIRECTION FORGETTING VIA
OBLIQUE PROJECTION DECOMPOSITION

For the RLS identification, the basic idea of VDF is to apply
forgetting only to directions that receive new information [21].
Following this idea, (5b) is modified by decomposing the old
information matrix Rk−1 into two disjoint parts as

Rk−1 = R
(1)
k−1 +R

(2)
k−1, (6)

such that R(1)
k−1 and R(2)

k−1 represent the retained part and the
forgotten part at time k, respectively. In this section, the above
decomposition is performed via oblique projection, and the
VDF-OPD algorithm is proposed for MO systems. For the
sake of self-containedness, necessary preliminaries on oblique
projection are given in Appendix A.

In the following derivations, we assume Φk 6= 0 and
Rk−1 > 0. Note that Rk−1 > 0 will be proved later in
Theorem 3. For MO systems, the following requirements are
imposed for the decomposition in (6):

i) R
(1)
k−1 is the retained part which satisfies

Φ>k R
(1)
k−1 = 0. (7)

This means that the retained information should reside
in a subspace that is orthogonal to the range space
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of the new regressor matrix Φk, i.e., Range
(
R

(1)
k−1

)
should be orthogonal to Range(Φk), or equivalently,
Range

(
R

(1)
k−1

)
⊆ Null(Φ>k ).

ii) R
(2)
k−1 is the forgotten part which satisfies

Φ>k R
(2)
k−1 = Φ>k Rk−1, (8)

according to (6) and (7). This means that the forgotten
part R(2)

k−1 and the old information matrix Rk−1 have
the same amount of correlation with Φk.

iii) The two decomposed parts are disjoint, i.e.,

Range
(
R

(1)
k−1

)
∩ Range

(
R

(2)
k−1

)
= {0}. (9)

iv) Positive semi-definiteness, i.e.,

R
(1)
k−1 ≥ 0, R

(2)
k−1 ≥ 0. (10)

Geometrically, the above requirements can be satisfied by
applying oblique projection to Rk−1. Define two complemen-
tary subspaces Vk−1 and Ṽk−1 in Rn, satisfying

Vk−1 + Ṽk−1 = Rn, Vk−1 ∩ Ṽk−1 = {0}. (11)

Let PVk−1|Ṽk−1
represent the oblique projection onto the sub-

space Vk−1 along Ṽk−1. According to Lemma 1 in Appendix
A, PṼk−1|Vk−1

= In − PVk−1|Ṽk−1
is the oblique compliment

that projects onto Ṽk−1 along Vk−1. By applying the above
two complementary oblique projections, the decomposition in
(6) is obtained as

R
(1)
k−1 = PṼk−1|Vk−1

Rk−1, R
(2)
k−1 = PVk−1|Ṽk−1

Rk−1. (12)

This decomposition implies

Range
(
R

(1)
k−1

)
= Ṽk−1 and Range

(
R

(2)
k−1

)
= Vk−1 (13)

since Rk−1 is non-singular. Then, requirements (7)–(9) for the
above decomposition are satisfied by setting

Ṽk−1 ⊆ Null(Φ>k ) (14)

according to Lemma 1 in Appendix A. As indicated by (13),
Vk−1 and Ṽk−1 are the forgotten and retained subspaces,
respectively.

It is reasonable to require that information in the entire
subspace Null(Φ>k ) is all retained, i.e.,

Ṽk−1 = Range
(
R

(1)
k−1

)
= Null(Φ>k ). (15)

Otherwise, certain directions within Null(Φ>k ) would be in-
cluded in the forgotten subspace Vk−1, and old information in
those directions would be discounted without being compen-
sated by new information from Φk.

Being a complement subspace of Ṽk−1, Vk−1 is to be
determined such that R(2)

k−1 = PVk−1|Ṽk−1
Rk−1 ≥ 0, as

required in (10). For this purpose, one solution is

Vk−1 = Range(Rk−1Φk), (16)

and the corresponding oblique projection matrix onto Vk−1
along Ṽk−1 is

PVk−1|Ṽk−1
= Rk−1Φk(Φ>k Rk−1Φk)†Φ>k

according to Lemma 1 in Appendix A. Therefore, R(1)
k−1 and

R
(2)
k−1 in (12) are

R
(1)
k−1 = Rk−1 −Rk−1Φk(Φ>k Rk−1Φk)†Φ>k Rk−1,

R
(2)
k−1 = Rk−1Φk(Φ>k Rk−1Φk)†Φ>k Rk−1.

(17)

Theorem 1. Both R
(1)
k−1 and R

(2)
k−1 in (17) are positive

semidefinite if Rk−1 > 0.

The proof is given in Appendix B. Theorem 1 shows that
the requirement (10) is achieved.

Remark 1. As a complement subspace of Ṽk−1, the selection
of Vk−1 is non-unique. But not all such selections can ensure
the symmetry and positive semi-definiteness of R(2)

k−1. For
example, a natural choice of Vk−1 is Vk−1 = Range(Φk),
then the oblique projection matrix PVk−1|Ṽk−1

becomes

PVk−1|Ṽk−1
= Φk

(
Φ>k Φk

)†
Φ>k .

However, the resulting R(2)
k−1 in (12) is non-symmetric.

In order to have a well-conditioned Moore-Penrose inverse
in (17), a dead zone is introduced as below for the regressor
matrix Φk:

R
(2)
k−1 = 0, if ‖Φk‖2 < ε, (18)

where ε is determined by the noise level in the data. If Φk lies
in the above dead zone, Φk is dominated by noise and carries
little new information. In this case, the VDF algorithm should
not forget any old information in Rk−1, and the decomposition
(6) is not performed.

By applying a variable forgetting factor µk only to R
(2)
k−1,

the information matrix Rk is updated by

Rk = R
(1)
k−1 + µkR

(2)
k−1 + ΦkΦ>k . (19)

The variable forgetting factor µk is introduced to further
improve tracking capability of the proposed VDF-OPD algo-
rithm. Various VRF strategies, such as those found in [14]–
[16], can be used to update µk adaptively. In this paper, µk is
adjusted according to the prediction error

ek = yk − Φ>k θ̂k−1 = Φ>k

(
θk − θ̂k−1

)
+ vk, (20)

where θ̂k−1 is the parameter estimated at time k − 1. A
large prediction error ek implies a large parameter estimation
error θk − θ̂k−1. To increase the sensitivity to the parameter
variations, the forgetting factor µk must decrease when the
prediction error ek is large. Therefore, we use the following
VRF strategy by modifying the idea in [14] for MO systems:

µk = max

{
µL, 1−

1

(η + e>k ek)

e>k ek
my + tr(Φ>k Pk−1Φk)

}
,

(21)
where µL represents the lower bound of µk and η is a positive
constant chosen by the user. The user-defined constant η can
be viewed as a sensitivity factor: a smaller η leads to higher
sensitivity of µk to variations of ek. As can be seen from (21),
when the prediction error ek increases, a smaller forgetting
factor is used such that the parameter estimate tracks the time-
varying parameters at a faster rate.
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The above proposed VDF-OPD algorithm is summarized
in Algorithm 1. Note that (23) is derived from (19) and (6).
When the considered system (1) has only a scalar output, the
regressor Φk defined in (4) becomes a vector, and Algorithm
1 reduces to the one proposed in [21].

Algorithm 1 Proposed VDF-OPD algorithm
Initialization: θ0, µL, R0, ε, η
Input: Φk in (4) and yk
Calculate the prediction error ek with (20);
Adjust µk using (21);
if ‖Φk‖2 < ε then

R
(2)
k−1 = 0

else
Compute R(2)

k−1 according to (17)
end if
Update Rk and θ̂k:

θ̂k =θ̂k−1 +R−1k Φk(yk − Φ>k θ̂k−1), (22)

Rk =Rk−1 − (1− µk)R
(2)
k−1 + ΦkΦ>k . (23)

IV. COMPARISON WITH VARIABLE-DIRECTION
FORGETTING VIA EIGENVALUE DECOMPOSITION

Recent progress made in the VDF-ED algorithm in [23] is
applicable to MO systems, thus is closely related to our VDF-
OPD algorithm. However, theoretical analysis of VDF-ED in
[23] considers only the condition of persistent excitation, e.g.,
see Proposition 10 in [23]. Then, it is of interest to compare
these two VDF algorithm under non-persistent excitation.

In the VDF-ED algorithm, the information matrix Rk is
updated by [23]

Rk = Uk−1ΛΣk−1ΛU>k−1 + Φ>k Φk, (24)

where the orthonormal matrix Uk−1 and the diagonal matrix
Σk−1 consist of eigenvectors and eigenvalues obtained from
the eigenvalue decomposition Rk−1 = Uk−1Σk−1U

>
k−1. The

diagonal matrix Λ in (24) applies forgetting to the direction
of the ith column of Uk−1 if the amount of new information
along this direction is above a threshold, i.e., the diagonal
entries of Λ are defined as

Λ(i, i) =

{ √
λk, if ‖coli(Ψk)‖ > εth,

1, otherwise, (25)

where
Ψk = Φ>k Uk−1, (26)

coli(Ψk) is the ith column of Ψk that represents the informa-
tion content of the regressor matrix Φk along the ith column
of Uk−1, λk ∈ (0, 1) is the forgetting factor, and εth is a user-
defined scalar which should be larger than the noise level.

To facilitate the following analysis, according to (25),
Rk−1 = Uk−1Σk−1U

>
k−1 is rewritten as

Rk−1 =
[
U1,k−1 U2,k−1

]
diag(Σ1,k−1,Σ2,k−1)

[
U>1,k−1
U>2,k−1

]
= U1,k−1Σ1,k−1U

>
1,k−1 + U2,k−1Σ2,k−1U

>
2,k−1

(27)

where both U1,k−1 and U2,k−1 consist of columns of Uk−1,
and satisfy∥∥coli(Φ>k U1,k−1)

∥∥ ≤ εth and
∥∥coli(Φ>k U2,k−1)

∥∥ > εth (28)

respectively. With (24) and (25), the old information in
Range(U1,k−1) is retained, while the old information in
Range(U2,k−1) is forgotten. Therefore, the information update
in (24) and (25) can be expressed in a form similar to (19),
i.e.,

Rk = M
(1)
k−1 + λkM

(2)
k−1 + ΦkΦ>k , (29a)

M
(1)
k−1 = U1,k−1Σ1,k−1U

>
1,k−1, (29b)

M
(2)
k−1 = U2,k−1Σ2,k−1U

>
2,k−1. (29c)

Both R(2)
k−1 in (19) and M (2)

k−1 in (29a) are the forgotten parts
in the above two forgetting algorithms.

Theorem 2. Assume Rk−1 > 0. Consider the noise-free
case. Set ε = 0 in (18) and εth = 0 in (25). Our proposed
VDF-OPD algorithm differs from VDF-ED in the adopted two
decompositions (17) and (29), i.e.,

rank(Φk) = rank
(
R

(2)
k−1

)
≤ rank

(
M

(2)
k−1

)
, (30)

Null
(
Φ>k
)

= Range
(
R

(1)
k−1

)
⊇ Range

(
M

(1)
k−1

)
. (31)

The proof is given in Appendix C. In the noisy case, we still
have (30) and (31) if the amount of informative data in Φk
is significantly larger than noise, and the corresponding proof
follows the same idea in Appendix C but with more tedious
derivations.

As indicated by (30) and (31), the retained part R(1)
k−1 in

our proposed VDF-OPD algorithm corresponds to the entire
subspace Null(Φ>k ). In contrast, for the VDF-ED algorithm,
there exist certain scenarios that some subspace S ⊂ Null(Φ>k )

is not included in its retained part M (1)
k−1, but added to its

forgotten part M (2)
k−1. Since the subspace S is orthogonal to

the subspace spanned by Φk, i.e., S ⊂ Null(Φ>k ), the forgotten
information in the subspace S cannot be compensated for by
the new information in Φk. Due to forgetting in the subspace
S, the eigenvalues of Rk−1 associated with S would be
continuously discounted until they reach a value smaller than
or equal to the threshold εth in (25). At this point, Rk is ill-
conditioned, because some of its eigenvalues are closed to εth
which is a small value at the noise level.

Example. Consider a noise-free ARX model yk = a1yk−1+
a2yk−2 + b0uk whose output is a scalar signal. Assume that
the system stays at the steady state with constant input and
output signals, and Φ∗ becomes a constant regressor vector
Φ∗ =

[
1 1 0

]>
. We set R0 = I3 for the two considered

forgetting algorithms. Consider a vector ω =
[
−1 1 0

]>
whose range space is a subset of Null(Φ>∗ ). For our VDF-
OPD algorithm, the forgotten part R(2)

k−1 is of rank 1, and the
retained part R(1)

k−1 must include Range(ω) according to (31).
In contrast, it will be shown in the following that whether
the VDF-ED algorithm in [23] includes Range(ω) in the
retained subspace depends on the orthonormal matrix U0 in
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the eigenvalue decomposition of R0 in (24). For the VDF-
ED algorithm in [23], if the orthonormal matrix U0 in (24) is
chosen to be U0 = I3, the forgotten part M (2)

k−1 corresponds
to the first two columns of U0, while the retained part
M

(1)
k−1 corresponds to the last columns of U0. Consequently,

Range(ω) lies in the forgotten subspace instead of the retained
subspace, i.e., Range(ω) ⊂ Range

(
M

(2)
k−1

)
. Meanwhile, no

new information is received along Range(ω) since the assumed
constant regressor vector Φ∗ is orthogonal to ω.

It should be also noted that the orthonormal matrix Uk−1
in (24) is non-unique if Rk−1 has identical eigenvalues. A
different selection of eigenvectors in Uk−1 might result in a
different decomposition of Rk−1 in (29). For instance, in the
above example, if we choose

U0 =

−
√
2
2 −

√
2
2 0

−
√
2
2

√
2
2 0

0 0 1

 ,
the two retained subspaces in VDF-OPD and VDF-ED are
identical, i.e., the range space spanned by the last two columns
of U0 given above. This issue caused by the non-unique
orthonormal matrix Uk−1 in (24) does not occur in our VDF-
OPD algorithm.

V. CONVERGENCE ANALYSIS

In this section, the convergence behavior of our proposed
VDF-OPD algorithm under non-persistent excitation is inves-
tigated.

For this purpose, it is important to first analyze the bound-
edness of the information matrix Rk at all time instants
[21]. With a lower bounded Rk, the algorithm gain R−1k Φk
remains upper bounded, which prevents the estimator windup
phenomenon. With an upper bounded Rk, the algorithm gain
R−1k Φk does not approach zero, thus it retains its tracking
capability. The following two theorems show that Rk is
bounded from below and above without requiring persistent
excitation. In contrast, the VDF-ED algorithm in [23] only
analyzes the lower bound of Rk under persistent excitation,
while the VDF algorithm in [21] is not applicable to MO
systems in this paper.

Theorem 3. Consider the recursive update of Rk in (23). With
ε defined in (18), if R0 > 0 and ε ≤ ‖Φk‖2 <∞ for all k > 0,
then i) R(1)

k−1 + µkR
(2)
k−1 > 0 for µk > 0 and k > 0; and ii)

there exists βk > 0 such that Rk > βkIn for all k > 0.

Theorem 4. With ε defined in (18), assume ε ≤ ‖Φk‖2 <∞
at all k > 0. Then there exist a finite constant γ > 0 such that
Rk < γIn for all k > 0.

Proofs of Theorems 3 and 4 are given in Appendices D and
E, respectively.

To analyze the dynamics of parameter estimation errors,
we assume θk in (3) to be constant, as in [19], [23]. Let θ
represent the true constant parameter. Then, the estimation
error is defined by

θ̃k = θ − θ̂k. (32)

The following theorem shows that in the presence of noise,
the estimation error variance converges to be within a finite
bound.

Theorem 5. With ε defined in (18), assume ε < ‖Φk‖2 ≤
∞,∀k > 0. Define

R̄k−1 = R
(1)
k−1 + µkR

(2)
k−1. (33)

There exist a ∈ (0, 1) and b ∈ (0, 1) such that

θ̃>R̄k−1R
−1
k R̄k−1θ̃ ≤ aθ̃>Rk−1θ̃,∀θ̃ 6= 0, (34)

Φ>k R
−1
k Φk ≤ bImy

(35)

hold for k > 0. Let δ represent the upper bound of the noise
variance E(v>k vk). The expected estimation error is upper

bounded as E
∥∥∥θ̃k∥∥∥2 ≤ ζk

βk
, where βk defined in Theorem 3 is

the lower bound of Rk, {ζk} is the sequence generated by

ζk = aζk−1 + bδ, ζ0 = θ̃>0 R0θ̃0. (36)

The bounding sequence {ζk} converges to ζ∞ = bδ
1−a as k

goes to infinity, and monotonically decreases if ζk > ζ∞.

The proof is given in Appendix F.

Remark 2. The convergence property holds only when the
parameter is constant or its change rate is slower than the
algorithm’s convergence speed.

VI. SIMULATION STUDY

In this section, we present a numerical example to show
the efficacy of our proposed VDF-OPD algorithm and its
advantage over the VDF-ED algorithm in [23].

The identification data is generated by the following MO
system

y1(k) = a1(k)y1(k − 1) + a2u1(k) + a3(k)u2(k) + v1(k),

y2(k) = b1y1(k − 1) + b2y2(k − 1) + b3(k)u2(k) + v2(k).

whose parameters and input signals are

a1(k) = −0.3− 0.1 sin (kπ/515) , a2 = 0.8,

a3(k) = −0.2− 0.1 cos (k/159) , b1 = 0.23,

b2 = −0.67, b3(k) = 0.43− 0.1 sin (k/235) ,

u1(k) = 10 sin(kπ/140) + 10 cos(kπ/187),

u2(k) = 10 cos(kπ/123).

This system model is equivalently written as

ȳk = Φ>k θk + v̄k,

with

Φk =


y1(k − 1) 0
u1(k) 0
u2(k) 0

0 y1(k − 1)
0 y2(k)
0 u2(k)



>

,

θk =
[
a1(k) a2 a3(k) b1 b2 b3(k)

]>
,

ȳk =

[
y1(k)
y2(k)

]
, v̄k =

[
v1(k)
v2(k)

]
.
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Fig. 1. The estimation results of two VDF algorithms.
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Fig. 2. The estimation results of EF algorithm.

TABLE I
RMSE OF PARAMETER ESTIMATES FROM EF, VDF-ED, AND VDF-OPD

ALGORITHMS.

EF VDF-ED VDF-OPD

θ1 1.3722 0.4385 0.1141
θ2 0.8438 0.2804 0.0774
θ3 0.2114 0.0954 0.0475
θ4 0.2616 0.0826 0.0193
θ5 1.9325 0.2408 0.0705
θ6 0.488 0.0746 0.0241

The measure noise vk is Gaussian, with zero mean and
covariance matrix 0.01I2.

Three RLS algorithms are implemented for comparisons:
the EF algorithm, our proposed VDF-OPD algorithm, and
the VDF-ED algorithm in [23]. In all three implemented
algorithms, the initial guess of the parameter is θ̂0 =[
0.5 0.5 0.5 0.5 0.5 0.5

]>
, and the initial information

matrix is R0 = 10−3I6. The constant forgetting factor µ in EF
is 0.95, while the VDF-OPD and VDF-ED algorithms use the
same variable forgetting factor strategy in (21) with η = 10−2

and µL = 0.5. The thresholds ε in (18) and εth in (25) are
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Fig. 3. λmin(Rk) in EF, VDF-ED, and VDF-OPD algorithms.

both set to 0.1.
The parameter estimates from the two VDF algorithms are

depicted in Fig. 1, while those given by EF are shown in Fig.
2. The achieved estimation performance listed in Table I is
evaluated by root mean square error (RMSE) of each element
in θk, i.e., √√√√ 1

N

N∑
k=1

(
θ̂k(i)− θk(i)

)2
,

where θk(i) and θ̂k(i) represent the ith element of the true
parameter and its estimate at time k, respectively.

As indicated by Fig. 2 and Table I, the parameter esti-
mates from the EF algorithm have the largest errors, and our
proposed VDF-OPD algorithm gives the smallest estimation
errors. This can be explained by the evolution of the minimal
eigenvalue of the information matrix Rk, i.e., λmin(Rk), in
these algorithms, as depicted in Fig. 3. For the EF algorithm,
its λmin(Rk) is significantly smaller than the other two algo-
rithms, hence its obtained estimates are most sensitive to noise.
After about time instant k = 700, the VDF-ED algorithm gives
highly noisy estimates in Fig. 1, because its value of λmin(Rk)
decreases to around 0.1. Compared to EF and VDF-ED, our
VDF-OPD algorithm gives the largest λmin(Rk), thus is least
sensitive to noise.

The robustness of VDF-OPD and VDF-ED algorithms are
further compared in terms of the condition number of Rk,
which is shown in Fig. 4. It can be seen that our VDF-OPD
algorithm gives a much lower condition number of Rk than
the VDF-ED algorithm.

VII. CONCLUSION

In this paper, a new VDF algorithm using oblique pro-
jection decomposition is presented for MO systems under
non-persistent excitation. It ensures the information matrix is
lower and upper bounded, and its estimation error variance
converges. In contrast, the VDF-ED algorithm in [23] dis-
counts old information in part of its forgotten subspace where
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no new information is received, hence producing a more ill-
conditioned information matrix under non-persistent excita-
tion. The advantage of our proposed algorithm is illustrated
by a numerical simulation example.

APPENDIX A
PRELIMINARIES ON OBLIQUE PROJECTION

Let X and Y be complementary subspaces of Rn, i.e., X +
Y = Rn and X ∩ Y = {0}. Note that X and Y are not
necessarily orthogonal. The oblique projector onto X along Y
is uniquely represented by a square matrix PX|Y ∈ Rn×n that
satisfies

PX|Yx = x, PX|Yy = 0, PX|Yz ∈ X

for all x ∈ X , y ∈ Y , and z ∈ Rn [27].

Lemma 1 (Theorem 1 in [27]). Consider two non-zero
matrices X ∈ Rn×p and Y ∈ Rn×q satisfying Y >X 6= 0.
Define two subspaces X = Range(X) and Y = Null(Y >).
Then the oblique projection matrix PX|Y is

PX|Y = X(Y >X)†Y >. (37)

If X +Y = Rn and X ∩Y = {0}, the two oblique projections
PX|Y and PY|X are complementary, i.e., PX|Y + PY|X = In.

Note that the oblique projection matrix PX|Y in (37) is
idempotent but can be non-symmetric. If X and Y in Lemma
1 are orthogonal complementary subspaces, PX|Y becomes an
idempotent and symmetric matrix representing the orthogonal
projection onto X .

APPENDIX B
PROOF OF THEOREM 1

It can be directly seen from (17) that R(2)
k−1 ≥ 0 holds. Next,

R
(1)
k−1 ≥ 0 will be proved. Since Rk−1 > 0, the Cholesky

factorization of Rk−1 is [28]

Rk−1 = Nk−1N
>
k−1, (38)

where Nk−1 ∈ Rn×n. Then, from (17) and (38), R(1)
k−1 in (17)

can be expressed as

R
(1)
k−1 = Nk−1N

>
k−1 −Nk−1DkN

>
k−1

= Nk−1(In −Dk)N>k−1,
(39)

with

Dk = N>k−1Φk(Φ>k Nk−1N
>
k−1Φk)†Φ>k Nk−1 (40)

being an idempotent matrix whose eigenvalues are either 0 or
1 [28]. Hence, R(1)

k−1 ≥ 0 is proved according to (39).

APPENDIX C
PROOF OF THEOREM 2

With the two complementary subspaces Vk−1 in (16) and
Ṽk−1 in (15), the applied oblique projection in (12) results in

rank
(
R

(2)
k−1

)
= rank(Rk−1Φk) = rank(Ψk) (41)

due to Rk−1 > 0 and (26). Note that (26) can be expressed
as coli(Ψk) = Φ>k coli(Uk−1), with coli denoting the ith
column of a matrix. According to (25) with εth = 0, if
coli(Ψk) is non-zero, the associated coli(Uk−1) should be
included in the forgotten part, i.e., U2,k−1 in (27). Otherwise,
coli(Uk−1) is included in the retained part, i.e., U1,k−1 in
(27). Hence rank(U2,k−1) is equal to the number of non-zero
columns of Ψk. Furthermore, since rank(Ψk) is less than or
equal to the number of non-zero columns of Ψk, we have
rank(Ψk) ≤ rank(U2,k−1), thus

rank
(
R

(2)
k−1

)
= rank(Ψk) ≤ rank(U2,k−1) = rank(M

(2)
k−1)

holds according to (41) and (29c). This proves (30).
With εth = 0 in (28), we have Φ>k U1,k−1 = 0, hence

Range(U1,k−1) ⊆ Null(Φ>k ) holds. This further implies (31)
according to (15) and

Range(U1,k−1) = Range
(
M

(1)
k−1

)
.

APPENDIX D
PROOF OF THEOREM 3

In the following, we prove that Rk obtained from (23) is
positive if Rk−1 is positive and Φk is bounded. This then leads
to the proof of Theorem 3 via mathematical induction.

From (17) and (38)–(40), we have

R
(1)
k−1 + µkR

(2)
k−1 = Nk−1 (In − (1− µk)Dk)N>k−1. (42)

Since Dk is an idempotent matrix, its eigenvalue decomposi-
tion can be expressed as

Dk = UDdiag(Is, 0)U>D ,

with s = rank(Dk). Then, we have

In − (1− µk)Dk = UDU
>
D − (1− µk)UDdiag(Is, 0)U>D

= UDdiag(µkIs, In−s)U
>
D > 0. (43)

Since Rk−1 is assumed positive, Nk−1 in the Cholesky fac-
torization (38) is nonsingular. Then, it can be seen from (42)
and (43) that R(1)

k−1 +µkR
(2)
k−1 > 0 for µk > 0. Therefore, Rk

in (23) is positive definite because Rk−1 − (1 − µk)R
(2)
k−1 =

R
(1)
k−1 + µkR

(2)
k−1 > 0.
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APPENDIX E
PROOF OF THEOREM 4

According to (21), there exists µ̄ ∈ (0, 1) such that µk ≤ µ̄.
Since ‖Φk‖2 < ∞, there exists a finite upper bound c such
that ‖Φk‖2 ≤ c, which implies ΦkΦ>k ≤ c2In. Then, Rk in
(23) satisfies

Rk ≤ R0 −
k∑
i=1

Qi (44)

with
Qi = (1− µ̄)R

(2)
i−1 − c

2In. (45)

Assume rank(Φk) = rk, where rk may vary with Φk. Let
the singular value decomposition of Φk be expressed as

Φk = Uφ,kSφ,kV
>
φ,k, (46)

where Sφ,k ∈ Rrk×rk is a diagonal matrix whose diagonal
elements are the positive singular values, Uφ,k ∈ Rn×rk and
Vφ,k ∈ Rm×rk consist of the left-hand and right-hand singular
vectors associated with Sφ,k. With (46), Φ>k Rk−1Φk can be
expressed as

Φ>k Rk−1Φk = Vφ,kSφ,kU
>
φ,kRk−1Uφ,kSφ,kV

>
φ,k

=
[
Vφ,k Ṽφ,k

]
diag(Σk, 0)

[
V >φ,k
Ṽ >φ,k

]
,

(47)

where Ṽφ,k ∈ Rm×(m−rk) consists of basis column vectors of
the orthogonal complement of Vφ,k, and

Σk = Sφ,kU
>
φ,kRk−1Uφ,kSφ,k. (48)

Since both Rk−1 and Sk are positive definite, Range(Uφ,k)
must be a subspace of Range(Rk−1), hence U>φ,kRk−1Uφ,k
and Σk in (48) are also positive definite. Then, the Moore-
Penrose inverse of Φ>k Rk−1Φk in (47) is(

Φ>k Rk−1Φk
)†

= Vφ,kΣ−1k V >φ,k

= Vφ,kS
−1
φ,k(U>φ,kRk−1Uφ,k)−1S−1φ,kV

>
φ,k.

(49)

With (46)–(49), R(2)
k−1 in (17) is rewritten as

R
(2)
k−1 = Rk−1Uφ,k(U>φ,kRk−1Uφ,k)−1U>φ,kRk−1. (50)

From (46) and (50), Qi in (45) can be expressed as

Qi = (1− µ̄)Ri−1Uφ,i(U
>
φ,iRi−1Uφ,i)

−1U>φ,iRi−1 − c2In.
(51)

Then, using the invariance property of trace under cyclic
permutations, the trace of Qi can be rewritten as

tr(Qi) = tr
[
(1− µ̄)(U>φ,iRi−1Uφ,i)

−1U>φ,iR
2
i−1Uφ,i − c2In

]
= tr

[
(U>φ,iRi−1Uφ,i)

−1U>φ,iΩi−1Uφ,i
]

(52)
with

Ωi−1 = Ri−1((1− µ̄)Ri−1 − c2In). (53)

Let λi−1,j represent the jth eigenvalue of Ri−1. Then the jth
eigenvalue of Ωi−1 in (52) is

ωi−1,j = λi−1,j((1− µ̄)λi−1,j − c2). (54)

Next, by following the same idea in the proof of Theorem
2 in [21], we prove that it is impossible to have an unbounded

Rk by contradiction. Assume that one eigenvalue λi−1,s (1 ≤
s ≤ n) of Ri−1 is unbounded. Then, at all time instants q ≥ i,
the eigenvalue λq,s of Rq becomes unbounded according to
the update of Rq in (23) from Rq−1. Hence, for all q ≥ i,
the eigenvalue ωq,s in (54) is unbounded. Furthermore, each
tr(Qi) in (52) is dominated by the ratio

ωq,s
λq,s

= (1− µ̄)λi−1,s − c2, q > i

that is unbounded. Therefore, on the right-hand side of (44),
tr
(
R0 −

∑k
i=1Qi

)
becomes negative and unbounded, which

is in contradiction with the positive definiteness of Rk proved
in Theorem 3. Such a contradiction proves that Rk must be
bounded from above.

APPENDIX F
PROOF OF THEOREM 5

According to Theorem 3, R̄k−1 is invertible for all k > 0.
By applying the matrix inversion lemma to (19), we have

R−1k = R̄−1k−1 − R̄
−1
k−1Φk

(
Im + Φ>k R̄

−1
k−1Φk

)−1
Φ>k R̄

−1
k−1,

R̄k−1R
−1
k R̄k−1 = R̄k−1 − Φk

(
Im + Φ>k R̄

−1
k−1Φk

)−1
Φ>k ,

(55)

Φ>k R
−1
k Φk = Φ>k R̄

−1
k−1Φk(Im + Φ>k R̄

−1
k−1Φk)−1. (56)

Under the condition ‖Φk‖2 > ε, R̄k−1 ≤ Rk−1 holds due to
the adopted forgetting strategy. Hence there exists a ∈ (0, 1)
such that (34) holds for all k > 0. According to (56), there
must also exist b ∈ (0, 1) such that (35) holds for all k ≥ 0.

From (19), (22), (20), (32), and (33), the parameter estima-
tion error dynamics is expressed as

θ̃k = R−1k

(
R̄k−1θ̃k−1 − Φkvk

)
. (57)

Then, the Lyapunov function Vk = θ̃>k Rkθ̃k is expressed as

Vk =
(
R̄k−1θ̃k−1 − Φkvk

)>
R−1k

(
R̄k−1θ̃k−1 − Φkvk

)
= θ̃>k−1R̄k−1R

−1
k R̄k−1θ̃k−1 − 2v>k Φ>k R

−1
k R̄k−1θ̃k−1

+ v>k Φ>k R
−1
k Φkvk.

(58)
Taking mathematical expectation on both sides of (58),

we have E {Φkvk} = 0 due to the statistical independence
between vk and Φk, then we derive

E{Vk} = E
{
θ̃>k−1R̄k−1R

−1
k R̄k−1θ̃k−1

}
+ E

{
v>k Φ>k R

−1
k Φkvk

}
≤ aE

{
θ̃>k−1Rk−1θ̃k−1

}
+ bE

{
v>k vk

}
≤ aE{Vk−1}+ bδ

(59)

according to (34) and (35). This implies E{Vk} ≤ ζk, with
ζk generated by (36). According to Rk ≥ βkIn in Theorem

3, βkE
∥∥∥θ̃∥∥∥2 ≤ E{Vk} ≤ ζk is derived, which further leads to

E
∥∥∥θ̃∥∥∥2 ≤ ζk

βk
.

As for the bounding sequence {ζk}: its convergence to ζ∞
can be derived from (36) with a ∈ (0, 1). If ζk > ζ∞, ζk
monotonically decreases with time because ζk+1−ζk < −(1−
a)ζ∞ + bδ = 0.
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