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Abstract

H2 static and dynamic output-feedback control problems are investigated for linear time-invariant uncertain systems. The goal
is to minimize the averaged H2 performance in the presence of nonlinear dependence on time-invariant probabilistic parametric
uncertainties. By applying the polynomial chaos theory, the control synthesis problem is solved using a high-dimensional
expanded system which characterizes stochastic state uncertainty propagation. Compared to existing polynomial chaos-based
control designs, the proposed approach addresses the simultaneous presence of parametric uncertainties and white noises. The
effect of truncation errors due to using finite-degree polynomial chaos expansions is captured by time-varying norm-bounded
uncertainties, and is explicitly taken into account by adopting a guaranteed cost control approach. This feature avoids the use
of high-degree polynomial chaos expansions to alleviate the destabilizing effect of expansion truncation errors, thus significantly
reducing computational complexity. Moreover, rigorous analysis clarifies the condition under which the stability of the high-
dimensional expanded system implies the internal mean square stability of the original system under control. Using iterations
between synthesis and post-analysis, a bisection algorithm is proposed to find the smallest bounding parameter on the effect
of expansion truncation errors such that robust closed-loop stability is guaranteed. A numerical example is used to illustrate
the effectiveness of the proposed approach.
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1 Introduction

The closed-loop stability and performance obtained
by state- and output-feedback control systems can be
sensitive to model uncertainties, which has motivated
numerous studies on the synthesis of robust control
insensitive to uncertainties, e.g., Ahn et al. (2018);
Chang et al. (2015); Dong and Yang (2013); Lee et al.
(2015); Petersen and Tempo (2014); Rosa et al. (2018);
Sadabadi and Peaucelle (2016); Salavati et al. (2019).
The static or reduced-order dynamic output-feedback
control synthesis problem for both nominal and uncer-
tain systems is NP-hard, which implies that standard
linear matrix inequalities (LMIs) and other convex
optimization formulations do not exist (Sadabadi and
Peaucelle, 2016).

Preprint submitted to Automatica 25 December 2021



The majority of the output-feedback and broader control
literature adopts a worst-case design strategy to ensure
stability and achieve a desired performance bound for all
possible uncertainties. This worst-case approach tends
to produce highly conservative performance because
the worst-case scenario may have vanishingly low prob-
ability of occurrence. In addition, most worst-case
approaches are limited to specific uncertainty structures,
such as norm-bounded, affine, polytopic, and integral
quadratic uncertainties (Petersen and Tempo, 2014).
A general nonlinear uncertainty structure cannot be
effectively addressed without introducing overbounds.

In contrast to a worst-case performance bound, the
practical interest in the performance variation or
dispersion across the uncertainty region has moti-
vated recent research on probabilistic robustness
(Petersen and Tempo, 2014). The design objectives then
include second-moment stability (Hosoe et al., 2018),
a probability-guaranteed performance bound (Tempo
et al., 2013; Yin et al., 2018), or an optimal averaged
performance (Boyarski and Shaked, 2005). In this line
of research, literature like Hosoe et al. (2018) assume
the uncertain parameters to be independent and identi-
cally distributed stochastic processes. This assumption
allows arbitrarily fast parameter variations, which is not
true in some applications. The randomized algorithm
proposed in Tempo et al. (2013) can address general
nonlinear dependence on uncertain parameters, but can
be computationally demanding since a large number of
samples is often needed.

The above observations have further led to robust
control research that aims at addressing averaged
performance in the presence of general nonlinear depen-
dence on probabilistic time-invariant parametric uncer-
tainties. Such an uncertainty description is commonly
generated by parameter identification techniques, but
is poorly suited for any existing robust control design
methods mentioned above. This robust control problem
is non-trivial because uncertainty propagation in such
an uncertain system is no longer a Markov process when
accounting for the time invariance of uncertain parame-
ters (Paulson et al., 2015). As a computationally efficient
non-sampling approach for quantifying uncertainty
propagation, polynomial chaos (PC) theory builds the
foundation of a recent promising solution to this problem
(Kim et al., 2013). PC theory allows characterization of
the evolution of probability distributions of the under-
lying stochastic system states by a high-dimensional
expanded deterministic system describing the evolution
dynamics of the polynomial chaos expansion (PCE)
coefficients. Thus the control synthesis problem can be
solved by using the PCE-transformed system. Up to
now, the existing PCE-based control methods have been
applied to stability analysis (Hover and Triantafyllou,
2006; Lucia et al., 2017), state-feedback control (Fisher
and Bhattacharya, 2009; Bhattacharya, 2019; Hsu and
Bhattacharya, 2017), optimal control (Bergner and

Kirches, 2018; Lefebvre et al., 2020; Nandi and Singh,
2018; Paulson and Mesbah, 2019), and stochastic model
predictive control (Dai et al., 2015; Paulson et al.,
2015). Except for Konda et al. (2011), most of the
published methods do not simultaneously consider
time-invariant random parametric uncertainties and
time-varying stochastic external disturbances, because
applying PCE to compute the uncertainty propagation
of time-varying stochastic disturbances involves infinite
number of random variables as time goes to infinity.
Moreover, due to trunction errors introduced by using
finite-degree PCEs, stability and performance derived
for the PCE-transformed system may not be automat-
ically achieved by the original system (Lucia et al.,
2017). Although increasing the PCE degree can alle-
viate the effect of PCE truncation errors, it may result
in significant increase in computational complexity as
the state dimension of the PCE-transformed system
factorially grows with the PCE degree.

In this article, PCE-based H2 static and dynamic
output-feedback controls are investigated. Both nonlinear
dependence on probabilistic time-invariant parametric
uncertainties and additive white noises are taken into
account by the developed PCE-transformed system.
Moreover, the approximation errors introduced by the
PCE truncations are captured by time-varying norm-
bounded uncertainties whose bound is used as a robus-
tifying tuning parameter. Based on the above PCE-
transformed system, a nominalH2 synthesis approach is
proposed when neglecting PCE truncation errors, while
a guaranteed cost H2 control is adopted to cope with
PCE truncation errors. The use of a robustifying param-
eter enforces closed-loop stability without resorting to
a high-degree PCE, thus avoiding high computational
complexity due to a large number of PCE terms. More-
over, rigorous analysis reveals the relationship between
the stability of the PCE-transformed system and the
internal mean square stability of the original system
under control. Using iterations between synthesis and
post-analysis, a bisection algorithm is proposed to find
the smallest robustifying parameter that ensures robust
closed-loop stability. In contrast, further analysis shows
that the Monte-Carlo sampling based H2 synthesis is
much less computationally efficient, and converges to
imposing the conservative worst-case stability constraint
as the number of samples grows to infinity.

This journal article extends the authors’ previous confer-
ence paper (Shen et al., 2017) in several ways including
robust synthesis that explicitly accounts for PCE trunca-
tion errors, dynamic output feedback control synthesis,
and providing proofs of the theoretical results.

This paper is organized as follows. Section 2 states
the probabilistic robust H2 control problem. Section 3
reviews preliminaries of PC theory and analyzes the
effect of PCE truncation errors. Our proposed static
and dynamic output-feedback controls are presented in
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Sections 4 and 5, respectively. Section 6 compares our
PCE-based approaches to the Monte-Carlo sampling
based synthesis. The simulation study and some conclu-
sions are presented in Sections 7 and 8, respectively.

2 Problem statement

Consider the linear time-invariant (LTI) dynamical
system described by

ẋ(t, ξ) = A(ξ)x(t, ξ) + Bw(ξ)w(t) + B(ξ)u(t, ξ) (1a)

z(t, ξ) = Cz(ξ)x(t, ξ) + Dzww(t) + Dzu(t, ξ) (1b)

y(t, ξ) = C(ξ)x(t, ξ) + Dww(t) (1c)

where x ∈ Rnx is the state, u ∈ Rnu is the control input,
w ∈ Rnw is the stochastic disturbance or noise, y ∈ Rny
is the measured output, and z ∈ Rnz is the controlled
output related to the performance of the control system.
Since A, Bw, B, C, and Cz in (1) are general nonlinear
functions of a random parameter vector ξ ∈ Rnξ , the
system state x, control input u, measured output y,
and controlled output z all depend on ξ. Note that Dzw

and Dz in (1b) are assumed to be independent of ξ, for
the sake of notation simplicity. Note that Dw in (1c) is
assumed to be independent of ξ for the sake of brevity,
which is explained later in Remark 3.

The uncertain parameter vector ξ lies within a bounded
set Ξ, and its elements are assumed to be mutually
independent random variables with known probability
density functions (PDFs). The PDF of ξ can be obtained
via either offline parameter identification from data,
or the a priori knowledge that specifies the relative
belief/importance of the underlying system at different
points in the uncertainty region Ξ. The above assump-
tion of mutual independence among the elements of ξ is
not restrictive, since linear transformation (Rosenblatt,
1952) or K-L expansion (Li and Zhang, 2007) can be
applied to remove correlation among these elements.
With the above time-invariant probabilistic parametric
uncertainties, the system model (1) describes a family of
LTI systems associated with a probability measure, i.e.,
each LTI system with a specific value of ξ is assigned
with a relative weight determined by the PDF of ξ
(Fisher and Bhattacharya, 2009; Konda et al., 2011;
Piga and Benavoli, 2017).

The objective of this paper is to design

(i) a static output-feedback (SOF) controller

u(t, ξ) = Ky(t, ξ) (2)

(ii) a dynamic output-feedback (DOF) controller

ẋK(t, ξ) = AKxK(t, ξ) + BKy(t, ξ)

u(t, ξ) = CKxK(t, ξ) + DKy(t, ξ)
(3)

that minimizes the H2 norm of the closed-loop system
Tzw in (1)-(3) from the noisy input w to the controlled
output z. Here, xK ∈ Rnc and nc ≤ nx. To account for
the time-invariant probabilistic parametric uncertainties
ξ, the H2 norm of the closed-loop system Tzw in (1)-(3)
is defined as

‖Tzw‖22 = Eξ

{∥∥∥T̂zw(ξ)
∥∥∥2

2

}
,∥∥∥T̂zw(ξ)

∥∥∥2

2
=

nw∑
k=1

∫ ∞
0

‖zk(t, ξ)‖22 dt,

(4)

where zk(t, ξ) denotes the controlled output response
over t ≥ 0 given the impulse disturbance w(t) = ekδ(t),
with δ(t) representing the unit impulse and ek the kth
column of an identity matrix Inw . As shown in (4),

‖Tzw‖22 can be regarded as the averaged squared H2

norm of a collection of systems T̂zw(ξ) parameterized
by ξ. Such a time-domain characterization of the H2

norm is related to the impulse-to-energy system gain,
see Section 4.7 of Skelton et al. (1997). By interchanging
the order of expectation, summation and integration,
the definition (4) can be rewritten as

‖Tzw‖22 =

nw∑
k=1

∫ ∞
0

Eξ{‖zk(t, ξ)‖22}dt. (5)

As the usual H2 norm, the finiteness of ‖Tzw‖22 requires
Dzw + DzKDw = 0 for the SOF case and Dzw +
DzDKDw = 0 for the DOF case.

Due to its general nonlinear uncertainty structure, the
above problem cannot be effectively addressed by most
existing worst-case robust control methods without
overbounding the uncertainties. Inspired by Fisher
and Bhattacharya (2009) and references therein, the
PC theory is adopted to quantify the dependence of
zk(t, ξ) on ξ in the above H2 norm ‖Tzw‖22. Specif-
ically, the substitution of state x, control input u,
controlled output z, and measured output y with their
PCE approximations transforms the original stochastic
system (1) into a high-dimensional expanded system
describing the dynamics of PCE coefficients. The H2

control synthesis is then solved by using the PCE-
transformed system.

The proposed approach aims at improving the existing
PCE-based control design methodology by (i) explic-
itly taking into account stochastic disturbance w; (ii)
proposing systematic design procedures to cope with
PCE truncation errors which could destabilize the
closed-loop system if neglected.

Remark 1 For the sake of notation simplicity, the
measured output equation (1c) does not include direct
feedthrough. With slight modifications, our proposed
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PCE-based approach is applicable to direct feedthrough
in the two cases:

i) The DOF control (3) with DK = 0 can be designed
with our proposed PCE-based approach in the pres-
ence of direct feedthrough.

ii) Let Kd and K represent the SOF control gains
derived with and without direct feedthrough, respec-
tively. Consider the case that the direct feedthrough
matrix D is independent of ξ. If I + DK is nonsin-
gular, the relationship Kd = K(I + DK)−1 ensures
that the above two controls result in the same closed-
loop dynamics (Fletcher, 1981). This approach
enables designing Kd in the presence of direct feed-
through by first computing K for a system without
direct feedthrough.

Other cases that include direct feedthrough and are
different from the above two cannot be addressed by the
PCE-based approach proposed in this paper, and are left
to future research.

3 Polynomial chaos approximation to stochastic
linear system

This section provides a brief introduction of polynomial
chaos approximation to the stochastic linear system (1)
using Galerkin projection, and then shows how the PCE
truncation errors affect the PCE-approximated closed-
loop dynamics.

3.1 Polynomial chaos expansion

For a random vector ξ, a function ψ(ξ) : Rnξ → R with
a finite second-order moment admits a PCE (Xiu, 2010)

ψ(ξ) =

∞∑
i=0

ψiφi(ξ), (6)

where {ψi} denotes the expansion coefficients, and
{φi(ξ)} denotes the multivariate PC bases in terms of
ξ. By using the Askey scheme of orthogonal polynomial
bases, the above expansion exponentially converges in
the L2 sense, which results in accurate approximations
even with a relatively small number of terms (Xiu,
2010). These basis functions are orthogonal with respect
to the probabilistic distribution µ(ξ) of the random
vector ξ, i.e., φ0(ξ) = 1, and

〈φi(ξ), φj(ξ)〉 =

∫
Ξ

φi(ξ)φj(ξ)µ(ξ) dξ = Eξ{φi(ξ)φj(ξ)}

=

{〈
φ2
i (ξ)

〉
= 1 if i = j

0 otherwise,
(7)

where Ξ is the support of µ(ξ), and φi(ξ)’s are normal-
ized such that 〈φ2

i (ξ)〉 = 1.

In practical computations, a PCE with an infinite
number of terms (6) needs to be truncated to a finite
degree p,

ψ(ξ) ≈ ψ̂(ξ) =

Np∑
i=0

ψiφi(ξ). (8)

The total number of terms in (8) is Np + 1 =
(nξ+p)!
nξ!p!

,

depending on the dimension nξ of ξ and the highest

degree p of the retained polynomials {φi(ξ)}Npi=0. By
using Wiener-Askey orthogonal polynomials according

to the PDF of ξ, the truncated PCE approximation ψ̂(ξ)
in (8) converges to ψ(ξ) in the mean-square sense (Xiu,
2010; Xiu and Karniadakis, 2002). Roughly speaking,
for a function ψ(ξ) with a differentiability order md,
the above PCE approximation error is O(p−md), which
means that the convergence rate is as fast as p−md

(Xiu, 2010). As such, in general a sufficiently accurate
approximation does not require a very high PCE degree.

3.2 Galerkin projection for stochastic linear system

Let si(t, ξ) denote the ith component of a vector s(t, ξ) ∈
Rns . The scalar si(t, ξ) is expressed as

si(t, ξ) = ŝi(t, ξ) + s̃i(t, ξ), (9)

where

ŝi(t, ξ) =

Np∑
j=0

πi,j(t)φj(ξ) (10)

is a truncated PCE with a degree p, πi,j(t) is the expan-
sion coefficient associated with the PC basis φj(ξ), and
s̃i(t, ξ) represents the truncation error. Define

ŝ(t, ξ) =
[
ŝ1(t, ξ) ŝ2(t, ξ) · · · ŝns(t, ξ)

]>
∈ Rns ,

s̃(t, ξ) =
[
s̃1(t, ξ) s̃2(t, ξ) · · · s̃ns(t, ξ)

]>
∈ Rns ,

(11)

π>i (t) =
[
πi,0(t) πi,1(t) · · · πi,Np(t)

]
∈ R1×(Np+1),

φ(ξ) =
[
φ0(ξ) φ1(ξ) · · · φNp(ξ)

]>
∈ RNp+1, (12)

sPCE(t) =
[
π1(t) · · · πns(t)

]
∈ R(Np+1)×ns .

Then the PCE approximation ŝi(t, ξ) in (10) can be
compactly written as ŝi(t, ξ) = π>i (t)φ(ξ), and the

vector s(t, ξ) =
[
s1(t, ξ) · · · sns(t, ξ)

]>
is expressed as

s(t, ξ) = ŝ(t, ξ) + s̃(t, ξ) = s>PCE(t)φ(ξ) + s̃(t, ξ)

=
(
φ>(ξ)⊗ Ins

)
︸ ︷︷ ︸

Φ>
s (ξ)

vec
(
s>PCE(t)

)︸ ︷︷ ︸
S(t)

+s̃(t, ξ) (13)
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where⊗ and vec(·) represent the Kronecker product and
the vectorization of a matrix, respectively. In the last
equation of (13), the property of the Kronecker product,
i.e., vec(EFG) = (G> ⊗ E)vec(F ) is applied (Brewer,
1978). With s representing x, u, y, or z, the PCE coef-
ficient vectors X, U, Y, and Z are defined similarly as
S in (13).

With (9)–(13), two equations

Eξ{Φs(ξ)Φ>s (ξ)} = Ins(Np+1), Eξ{Φs(ξ) ˙̃s(t, ξ)} = 0
(14)

are obtained as a result of the normalized orthogonality
of the PC bases in (7). The second equation in (14) is
derived from

˙̃si(t, ξ) =
d

dt
{si(t, ξ)− ŝi(t, ξ)} =

∞∑
j=Np+1

π̇i,j(t)φj(ξ),

Eξ{φk(ξ) ˙̃si(t, ξ)} = 0, k = 0, 1, · · · , Np.

In the Galerkin projection, the PCEs of x(t, ξ) and
u(t, ξ) in the form of (13) are inserted into (1a) to give

Φ>x (ξ)Ẋ(t) = A(ξ)Φ>x (ξ)X(t) + Bw(ξ)w(t) (15)

+ B(ξ)Φ>u (ξ)U(t) + rx(t, ξ)− ˙̃x(t, ξ),

rx(t, ξ) = A(ξ)x̃(t, ξ) + B(ξ)ũ(t, ξ), (16)

where x(t, ξ) and u(t, ξ) in (1a) are replaced by
Φ>x (ξ)X(t) + x̃(t, ξ) and Φ>u (ξ)U(t) + ũ(t, ξ), respec-

tively. Note that the error term rx(t, ξ)− ˙̃x(t, ξ) results
from the PCE truncation errors x̃(t, ξ) and ũ(t, ξ).
Then, left multiplying (15) by Φx(ξ) gives

Φx(ξ)Φ>x (ξ)Ẋ(t) = Φx(ξ)A(ξ)Φ>x (ξ)X(t)

+ Φx(ξ)Bw(ξ)w(t) + Φx(ξ)B(ξ)Φ>u (ξ)U(t)

+ Φx(ξ)rx(t, ξ)− Φx(ξ) ˙̃x(t, ξ).
(17)

By taking the expectation with respect to ξ on both sides
of (17), it follows that the PCE-transformed system

Ẋ(t) = AX(t) + Bww(t) + BU(t) + Rx(t) (18)

describes the dynamics of the PCE coefficient vector
X(t), with

A = Eξ{Φx(ξ)A(ξ)Φ>x (ξ)}, (19a)

Bw = Eξ{Φx(ξ)Bw(ξ)}, (19b)

B = Eξ{Φx(ξ)B(ξ)Φ>u (ξ)}, (19c)

Rx(t) = Eξ{Φx(ξ)rx(t, ξ)}. (19d)

For deriving (18) and (19), (14) is applied. Note that A,
Bw, and B are time-invariant matrices, while Rx(t) is a

time-varying error term since the error term rx(t, ξ) is
not orthogonal to the low-degree PC bases in Φx(ξ).

Following similar procedures, the controlled output
equation (1b), the measured output equation (1c), the
SOF controller (2), and the DOF controller (3) can be
transformed into

• the PCE-transformed controlled output equation

Z(t) = CZX(t) +DZww(t) +DZU(t), (20)

• the PCE-transformed measured output equation

Y(t) = CX(t) +Dww(t) + Ry(t), (21)

• the PCE-transformed SOF controller

U(t) = KY(t), (22)

• the PCE-transformed DOF controller

ẊK(t) = AKXK(t) + BKY(t)

U(t) = CKXK(t) +DKY(t),
(23)

respectively, where

CZ = Eξ{Φz(ξ)Cz(ξ)Φ>x (ξ)}, DZw = Eξ{Φz(ξ)Dzw},
(24a)

DZ = INp+1 ⊗Dz, C = Eξ{Φy(ξ)C(ξ)Φ>x (ξ)}, (24b)

Dw = Eξ{Φy(ξ)Dw}, K = INp+1 ⊗K, (24c)

AK = INp+1 ⊗AK , BK = INp+1 ⊗BK , (24d)

CK = INp+1 ⊗CK , DK = INp+1 ⊗DK , (24e)

Ry(t) is an error term defined as

Ry(t) = Eξ{Φy(ξ)ry(t, ξ)}, ry(t, ξ) = C(ξ)x̃(t, ξ)
(25)

due to the PCE truncation errors, similar to Rx(t) in
(19d). Note that the matrices in the controlled output
equation (1b), the SOF controller (2), and the DOF
controller (3) do not depend on ξ, thus the high-degree
terms of these equations satisfy Eξ{Φs(ξ)̃s(t, ξ)} = 0,
where s represents x, u, y, and z.

As the uncertain system (1) has general nonlinear uncer-
tainty structure depending on ξ, the matrices A, Bw, B,
CZ, DZw, DZ, C, and Dw defined in (19), (24a), (24b),
and (24c) are time-invariant, and can be obtained via
numerical integration (Xiu, 2010).

3.3 Error analysis of PCE-approximated dynamics

Most existing PCE-based control design methods, e.g.,
Fisher and Bhattacharya (2009), relied on the PCE-
transformed system (18)-(23) but neglected the error
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terms Rx(t) and Ry(t) therein. In this case, even though
the PCE-transformed system is stabilized, the closed-
loop system might be unstable due to perturbations from
the neglected error terms Rx(t) and Ry(t), as is analyzed
in next section.

Combining the PCE-transformed open-loop dynamics
(18) and the PCE-transformed SOF controller (22) gives
the PCE-transformed closed-loop system

Ẋ(t) = (A+ BKC) X(t) + (Bw + BKDw) w(t)

+ Rx(t) + BKRy(t)

Z(t) = (CZ +DZKC) X(t) + (DZw +DZKDw) w(t)

+DZKRy(t).
(26)

To facilitate the PCE-based control synthesis, the
following expressions for the two error terms Rx(t) and
Ry(t) are derived, with a proof given in Appendix A.

Proposition 1 There exist time-varying matricesFx(t)
and Fy(t) such that

Rx(t) = Fx(t)X(t), Ry(t) = Fy(t)X(t). (27)

Using the above notations, the PCE-transformed closed-
loop system (26) can be written as

TZw =

A+ BKC + Fx(t) + BKFy(t) Bw + BKDw

CZ +DZKC +DZKFy(t) DZw +DZKDw

 .
(28)

With similar procedures, the PCE-transformed closed-
loop system under the PCE-transformed DOF controller
(23) is

T̄Zw =


A+BDKC+Fx(t)+BDKFy(t) BCK Bw+BDKDw

BKC+BKFy(t) AK BKDw

CZ+DZDKC+DZDKFy(t) DZCK DZw+DZDKDw

 .
(29)

In (28) and (29), the effect of the PCE truncation
errors is described by the multiplicative uncertainties
Fx(t) and Fy(t). They would destabilize the closed-loop
system in certain cases if completely neglected. How
to cope with these uncertainties will be discussed in
Sections 4.2, 4.3, and 5.

4 Static output-feedback synthesis using poly-
nomial chaos

In this section, two PCE-based H2 synthesis methods
are proposed for the SOF synthesis problem formulated

in Section 2, using the PCE-transformed systems (18)–
(22). The first PCE-based synthesis method neglects the
PCE approximation errors Rx(t) and Ry(t) analyzed
in Section 3.3, while the second PCE-based synthesis
method explicitly copes with these error terms using a
guaranteed-cost approach.

4.1 H2 static output-feedback synthesis

According to (13), the controlled output z(t, ξ) can be
written as

z(t, ξ) = Φ>z (ξ)Z(t) + z̃(t, ξ),

which leads to

Eξ{‖z(t, ξ)‖22}
= Z>(t)Eξ{Φz(ξ)Φ>z (ξ)}Z(t)

+ 2Z>(t)Eξ{Φz(ξ)z̃(t, ξ)}+ Eξ{‖z̃(t, ξ)‖22}
≈ ‖Z(t)‖22 .

(30)

In the above equation, Eξ

{
Φz(ξ)Φ>z (ξ)

}
= Inz(Np+1)

and Eξ {Φz(ξ)z̃(t, ξ)} = 0 are used as a result of the

normalized orthogonality (7). The term Eξ

{
‖z̃(t, ξ)‖22

}
due to the PCE truncation error z̃(t, ξ) is neglected,
because it converges to zero at a fast rate, and thus could
be sufficiently small without using a high PCE degree,
see explanations at the end of Section 3.1. From (30),

minimizing the H2 norm ‖Tzw‖22 in (5) can be approxi-
mated by

min
K

nw∑
k=1

∫ ∞
0

‖Zk(t)‖22 dt, (31)

where Zk(t) is the PCE coefficient vector of the output
response zk(t, ξ) in (5). By doing so, the original SOF

problem (5) of minimizing the H2 norm ‖Tzw‖22 in (5) is
transformed into a standard nominal H2 SOF problem
(31) for the linear time-invariant PCE-transformed
system (18)–(22), when the error terms Rx(t) and Ry(t)
can be neglected. How to cope with nonnegligible errors
Rx(t) and Ry(t) will be discussed in Sections 4.2 and
4.3.

The problem (31) aims at minimizing the H2 norm of
the PCE-transformed closed-loop system (28) from the
disturbance w to the measured output Z. Note that
Fx(t) and Fy(t) in (28) are set to zero due to neglecting
PCE truncation errors, and DZw + DZKDw = 0 is
required to obtain a finite H2 norm. Then standard
procedures are used to convert (31) into the optimization

min
Pcs,K

trace
(
B>w,csPcsBw,cs

)
s.t. Pcs > 0, A>csPcs + PcsAcs + C>Z,csCZ,cs < 0
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where

Acs = A+ BKC, Bw,cs = Bw + BKDw,

CZ,cs = CZ +DZKC,
(32)

and the subscript “cs” indicates that all three matrices
are for the closed-loop system under SOF. The above
problem can be equivalently transformed into

min
Λcs,Qcs,K

trace (Qcs)

s.t.

[
Qcs ?

Bw + BKDw Λcs

]
> 0,

[
He{(A+ BKC)Λcs} ?

(CZ +DZKC)Λcs −I

]
< 0,

(33)

using Λcs = P−1
cs , and K defined in (24c), according to

the Schur complement lemma, where He{·} denotes the
sum of a square matrix and its transpose. In the rest
of this paper, within a symmetric block matrix as in
(33), an off-diagonal block ? at the position (i, j) repre-
sents the transpose of the block at the symmetric posi-
tion (j, i). As in any standard SOF problem, the second
matrix inequality in (33) is a bilinear matrix inequality
(BMI) (VanAntwerp and Braatz, 2000) due to the multi-
plication between Λcs and K as well as the special struc-
ture of K = INp+1 ⊗K.

The above H2 synthesis problem extends the PCE-
based linear quadratic regulation method proposed in
Fisher and Bhattacharya (2009) to address the addi-
tive stochastic disturbance w. This formulation has the
same limitation as Fisher and Bhattacharya (2009) as
a result of neglecting the PCE truncation errors, i.e.,
the above synthesis might fail to stabilize the orig-
inal dynamics (1a) (Lucia et al., 2017). Specifically,
the accuracy of the PCE approximation degrades over
time, and the perturbation from the neglected error
terms Rx(t) and Ry(t) in the closed-loop system (28)
grows (Luchtenburg et al., 2014). When the control
action does not provide sufficient compensation for
such a model-plant mismatch, the system state would
diverge. Few existing PCE-based control designs explic-
itly address this problem (Lucia et al., 2017). The
commonly adopted remedy in literature is the use of
higher degree PCE approximations at the cost of larger
computational burden when solving (33). As the PCE
degree p increases, the number of PCE terms increases
factorially, and then the involved computational burden
rapidly grows and easily becomes prohibitive.

4.2 H2 guaranteed cost static output-feedback synthesis

In order to explicitly compensate for PCE truncation
errors in the PCE-based synthesis, the error terms

rx(t, ξ) in (16) and ry(t, ξ) in (25) are assumed to be
bounded as

Eξ

{
‖Φs(ξ)rs(t, ξ)‖22

}
≤ ρ2

s ‖X(t)‖22 (34)

where s represents x and y, respectively. From (19d),
(25) and (34), it then follows that

‖Rs(t)‖22 = ‖Eξ {Φs(ξ)rs(t, ξ)}‖22
≤ Eξ

{
‖Φs(ξ)rs(t, ξ)‖22

}
≤ ρ2

s ‖X(t)‖22 ,

and consequently, F>s (t)Fs(t) ≤ ρ2
sInx(Np+1) according

to (27). With the above norm-bounded uncertainty
description of Fx(t) and Fy(t), the synthesis of the
PCE-transformed closed-loop system (28) is proposed
below, with tuning of ρx and ρy discussed in Section 4.3.

First, the PCE-transformed closed-loop system (28) is
rewritten as

Ẋ(t) = AcsX(t) + Gcsωcs(t) + Bw,csw(t) (35a)

Z(t) = CZ,csX(t) + Lcsωcs(t) (35b)

ωcs(t) =

[
∆x(t) 0

0 ∆y(t)

]
ψcs(t), (35c)

ψcs(t) =

[
ρxI

ρyI

]
X(t), (35d)

with Acs, Bw,cs, and CZ,cs defined in (32), and

Gcs =
[
I BK

]
, Lcs =

[
0 DZK

]
, (36)

∆s(t) =
Fs(t)

ρs
, ‖∆s(t)‖ ≤ 1, s presents x or y. (37)

With the same procedures in Section 4.1, the design
objective (5) is transformed into (31).

Theorem 1 The closed-loop system (35) is quadrati-
cally stable for all ‖∆x(t)‖ ≤ 1 and ‖∆y(t)‖ ≤ 1 if and
only if there exist Pcs > 0 and a scalar µcs > 0 such that[

A>csPcs + PcsAcs + µcs(ρ
2
x + ρ2

y)I ?

G>csPcs −µcsI

]

+

[
C>Z,cs

L>cs

] [
CZ,cs Lcs

]
< 0.

(38)

Suppose the above statement holds, then theH2 cost func-
tion (31) is upper bounded by trace

(
B>w,csPcsBw,cs

)
.

The proof is given in Appendix B.
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According to Theorem 1, the robustH2 control synthesis
is formulated as

min
Pcs,QcsK,µcs

trace (Qcs)

s.t.

[
Qcs ?

Pcs(Bw + BKDw) Pcs

]
> 0,

He{Pcs(A+ BKC)}+ µcsρ
2I ? ? ?

Pcs −µcsI ? ?

K>B>Pcs 0 −µcsI ?

CZ +DZKC 0 DZK −I

 < 0

(39)
with ρ2 = ρ2

x + ρ2
y. It aims at minimizing an upper

bound of the averaged squaredH2 norm. In contrast, the
conventional worst-case robust approach minimizes an
upper bound of the worst-case squared H2 norm. Simi-
larly to the second inequality in (33), both inequalities
in (39) are BMIs.

4.3 Post-analysis of stability and parameter tuning

The PCE-based synthesis problem (39) relies on a
PCE-transformed approximation (35) of the original
system (1) under control (2), and explicitly takes into
account the PCE approximation errors by introducing
the lumped robustifying parameter ρ2. However, the
synthesis solution to (39) might fail to stabilize the orig-
inal system (1), if the adopted value of ρ2 is not large
enough to ensure ρ2 ≥ ρ2

x + ρ2
y, where ρ2

x and ρ2
y are

defined in (34) to bound the PCE approximation errors.
Therefore, two questions arise:

Q1 Under which conditions does the control gain
obtained from (39) stabilize the original system (1);

Q2 How to systematically tune the lumped robusti-
fying parameter ρ2 in (39).

The following theorem answers Q1, and will be used to
provide the answer to Q2.

Theorem 2 Assume that for all ξ ∈ Ξ, (A(ξ),C(ξ))
is detectable, and the matrices A(ξ), B(ξ) and C(ξ)
are bounded. With ρ2

x and ρ2
y defined in (34) for PCE

approximation errors, if the synthesis problem (39) with
the robustifying parameter ρ2 ≥ ρ2

x + ρ2
y is feasible, then

the obtained controller internally stabilizes the original
system (1) in the mean-square sense.

The proof is given in Appendix C.

Theorem 2 clarifies sufficient conditions for stabilizing
the original system (1) with the control gain obtained
from (39). One of these sufficient conditions is ρ2 ≥
ρ2

x + ρ2
y. However, it is difficult to determine such ρ2

before a control law is designed, because the error bounds

ρ2
x and ρ2

y in (34) depend on the control gain K that is to
be designed. To be specific, rx(t, ξ) and ry(t, ξ) in (34)
describe the errors of the PCE-transformed approxima-
tion to the entire closed-loop system, hence must rely
on the control gain K. As indicated by (A.5) and (25),
rx(t, ξ) has an explicit dependence on K, and ry(t, ξ)
depends on x̃(t, ξ) that is related to rx(t, ξ) and K.
Even with a synthesized control gain, it would be still
extremely challenging, if not impossible, to verify (34)
over an infinite time horizon, because the expressions
(A.1) and (A.5) for x̃(t, ξ) and rx(t, ξ) cannot be directly
evaluated.

Due to the reasons mentioned above, instead of checking
whether the sufficient condition ρ2 ≥ ρ2

x + ρ2
y holds, we

perform a posterior stability test after solving (39) with a
selected ρ2. Since a small value of ρ2 is preferred to avoid
conservatism, an iterative tuning method is developed
to find the least conservative value of ρ2 such that the
controller obtained from (39) stabilizes the system (1).
Here, the posterior stability test is performed by using
the probabilistic approach of Piga and Benavoli (2017).
This approach formulates the robust stability analysis
problem in the probabilistic setting, and uses a theory-
of-moments relaxation to derive a semidefinite program
that computes an upper probability bound of instability.
Using only the support information of the probability
measure of ξ in the moment relaxation problem, if the
derived upper probability bound of instability for all
probability measures with the given support is strictly
smaller than 1, then robust closed-loop stability is guar-
anteed according to Property 1 in Piga and Benavoli
(2017).

With a selected PCE degree p, the procedure of the
PCE-based control synthesis is summarized as follows.
Firstly, the nominal PCE-based synthesis (33) is solved.
If the posterior stability test shows that the resulting
closed-loop system is robustly stable, a stabilizing PCE-
based control is found. Otherwise, the robust PCE-based
synthesis (39) has to be considered. Together with the
posterior stability test, the bisection search described in
Algorithm 1 is developed to iteratively tune ρ2 within an
interval [0, ρ2

max] until its least conservative value ρ2
min is

found. Here, ρ2
max is the maximal value of ρ2 that ensures

the feasibility of (39), which can be found by another
simple bisection search algorithm that is omitted here
due to space limit. As such, ρ2

max has the following two
properties according to Theorem 2: i) ρ2

max ≥ ρ2
x + ρ2

y

holds, because Theorem 2 assumes the existence of ρ2 ≥
ρ2

x + ρ2
y that ensures the feasibility of (39); and ii) the

solution to (39) with ρ2 = ρ2
max stabilizes the original

system (1) in the mean-square sense.

Due to the use of the robustifying parameter ρ2, certain
conservativeness is introduced. Such conservatism can
be reduced by moderately increasing the PCE degree p
and accordingly reducing ρ2. This is achieved at the cost
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Algorithm 1 Bisection search for tuning ρ2 in (39)

Initialization: ρ2
L ← 0, ρ2

U ← ρ2
max, where ρ2

max is the
maximal value of ρ2 that ensures the feasibility of (39).
Set the tolerance ε of the stopping criteria.
repeat

ρ2 ← 1
2 (ρ2

L + ρ2
U )

if the posterior robust stability test shows that the
solution to (39) with ρ2 stabilizes the original system
(1) then

ρ2
U ← ρ2

else
ρ2
L ← ρ2

end if
until ρ2

U − ρ2
L ≤ ε

Output: ρ2
min ← ρ2

of significantly higher computational load, since the size
of the synthesis problem grows factorially with the PCE
degree.

5 Dynamic output-feedback synthesis using
polynomial chaos

In this section, BMI synthesis conditions are derived
for the PCE-based H2 DOF controller by reducing it
to a SOF problem, as in the standard DOF synthesis
approach proposed in Scherer et al. (1997).

When neglecting the PCE truncation errors, the cost
function (31) is considered in the PCE-based DOF
synthesis for the PCE-transformed closed-loop system
(29), i.e.,

T̄Zw =

 Ā+ B̄K̄C̄ B̄w + B̄K̄D̄w

C̄Z + D̄ZK̄C̄ D̄Zw + D̄ZK̄D̄w


=

 Acd Bw,cd

CZ,cd 0

 ,
(40)

where

Ā =

[
A 0

0 0

]
, B̄w =

[
Bw
0

]
, B̄ =

[
B 0

0 I

]
,

C̄Z =
[
CZ 0

]
, D̄Zw = DZw, D̄Z =

[
DZ 0

]
,

C̄ =

[
C 0

0 I

]
, D̄w =

[
Dw

0

]
, K̄ =

[
DK CK
BK AK

]
,

(41)

AK , BK , CK , DK are defined in (24d) and (24e), the
subscript “cd” indicates the closed-loop system matrices
under DOF, and D̄Zw + D̄ZK̄D̄w = 0 is required to
obtain a finite H2 norm. Since (40) and (28) are in
the same form, the above PCE-based DOF synthesis

problem can be constructed similarly to the PCE-based
SOF synthesis problem (33), hence the details are
omitted.

When addressing the PCE truncation errors, the PCE-
transformed closed-loop system (29) can be rewritten as

Ẋcd(t) = AcdXcd(t) + Gcdωcd(t) + Bw,cdw(t),

Z(t) = CZ,cdXcd(t) + Lcdωcd(t),

ωcd(t) =

[
∆x(t) 0

0 ∆y(t)

]
ψcd(t),

ψcd(t) =

[
ρxI 0

ρyI 0

]
Xcd(t),

(42)

by applying the same procedure that derives (35) from

(28), with Xcd(t) =
[
X>(t) X>K(t)

]>
, Acd, Bw,cd, and

CZ,cd defined in (40) and (40), ∆x(t) and ∆y(t) defined
in (37), and

Gcd =

[
I BDK
0 BK

]
, Lcd =

[
0 DZDK

]
.

Then, the robustH2 DOF synthesis problem for (42) can
be constructed by following Theorem 1 that is applied
to the closed-loop SOF system (35).

In the conventional output-feedback synthesis, the addi-
tional structure in a DOF controller allows the use of
congruence transformation and change of variables to
obtain a LMI synthesis problem (Scherer et al., 1997).
The same strategy, however, does not work for the
above PCE-based DOF synthesis problems because of
the block-diagonal structure of controller parameters as
shown in (24d) and (24e). Therefore, a BMI solver is
needed to solve the PCE-based DOF synthesis problems
for a full-order or reduced-order controller.

Remark 2 All the proposed PCE-based synthesis prob-
lems involve BMIs, thus are nonconvex. Global optimiza-
tion algorithms exist which are applicable to moderate-
sized BMI problems without requiring an initial guess
(Goh et al., 1994). For a BMI problem with a large size,
a global optimization algorithm is often computation-
ally prohibited, and the alternative are local optimization
algorithms such as PENBMI (Kočvara and Stingl, 2012).
To find a good initial guess for the local search, various
LMI relaxations or iterative LMI algorithms are avail-
able for SOF or DOF controls in literature (Sadabadi and
Peaucelle, 2016). It should be noted that modifications
have to be made to these existing methods to account for
the structures of the SOF/DOF control gains K in (24c)
and K̄ in (41). Relevant details are not included here due
to limited space. If an initial guess cannot be found by
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these local search methods, the global search approach can
be used by solving a BMI feasibility problem with a higher
computational cost.

6 Comparison with Monte-Carlo sampling
based H2 output-feedback synthesis

Following Tempo et al. (2013), a Monte-Carlo sampling
based method is briefly reviewed here, to compare
with the PCE-based synthesis proposed in the previous
sections. For the sake of brevity, only the SOF case is
discussed, and similar conclusions are applicable to the
DOF case.

When applying the standard H2 synthesis conditions,
the averaged H2 SOF problem stated in Section 2 can
be formulated as

min
P(ξ),K

Eξ

{
trace

(
B>w,c(ξ)P(ξ)Bw,c(ξ)

)}
s.t. P(ξ) > 0, Eξ

{
x>(t, ξ)Υ(ξ)x(t, ξ)

}
< 0,

(43)

where P(ξ) ∈ Rnx×nx is a predefined function of ξ, and

Ac(ξ) = A(ξ) + B(ξ)KC(ξ),

Bw,c(ξ) = Bw(ξ) + B(ξ)KDw,

Cz,c(ξ) = Cz(ξ) + DzKC(ξ),

Υ(ξ) = A>c (ξ)P(ξ) + P(ξ)Ac(ξ) + C>z,c(ξ)Cz,c(ξ).

(44)

The Monte-Carlo sampling based approach uses a finite
number of realizations of ξ to recast the above problem
as

min
Λ1,...,ΛN ,

Q1,...,QN ,K

1

N

N∑
i=1

trace(Qi) (45a)

s.t.

[
ΛiA

>
c (ξi) + Ac(ξi)Λi ?

Cz,c(ξi)Λi −I

]
< 0, (45b)

[
Qi ?

Bw,c(ξi) Λi

]
> 0, Λi > 0, i = 1, · · · , N,

where {ξi} are sampled from the probability distribution
of ξ,N is the number of samples, and each pair of Λi and
Qi is applied to a different sample. The inequalities in
(45) are converted from B>w,c(ξi)PiBw,c(ξi) < Qi and

Υ(ξi) < 0 by using Λi = P−1
i , with Υ(ξi) defined in

(44).

To achieve a satisfactory approximation to the original
problem (43), a large number of samples are neces-
sary, as analyzed in Sections 8.3 and 10.3 of Tempo
et al. (2013). This leads to heavy computational load
when solving the problem (45), as illustrated later by a

numerical example in Section 7. In contrast, the PCE
approximation exponentially converges with its degree
increasing, thus usually a relatively small degree is
needed. As a result, solving the PCE-based synthesis
problems derived in Sections 4 and 5 can be much more
efficient. Even when a small PCE degree results in PCE
truncation errors to be accounted for, not only the PCE
degree p but also the robustifying parameter ρ intro-
duced in Sections 4.2 and 5 are available to enhance
our proposed PCE-based design without significantly
increasing computational complexity.

Another limitation of the Monte-Carlo sampling based
approach lies in replacing the stochastic stability condi-
tion Eξ

{
x>(t, ξ)Υ(ξ)x(t, ξ)

}
< 0 in (43) by (45b). This

is conservative, because (45b) converges to a worst-case
robust stability constraint as the sample size increases.

7 Numerical simulations

Consider a system of the form (1) whose parameters are

A(ξ) =

[
0.2 + 0.3ξ3 −0.4

0.1 0.5

]
, Bw =

[
0.6 0

0 1

]
,

B =

[
0.5 0.1

0.2 1

]
, Cz =

[
I2

02×2

]
, Dz =

1√
3

[
02×2

I2

]
,

C =
[
0.8 0.4

]
, Dw = 01×2, Dzw = 04×2,

(46)
with the uncertain parameter ξ being uniformly distrib-
uted over the interval [−1, 1].

Firstly, four H2 SOF control synthesis methods are
implemented for comparisons: (i) a worst-case robust
SOF synthesis that exploits the polytopic uncertainty
ξ3 ∈ [−1, 1] to overbound the polynomial parametric
uncertainty in (46) (Geromel et al., 2007); (ii) our
proposed PCE-based nominal SOF synthesis (33); (iii)
our proposed PCE-based guaranteed cost SOF synthesis
(39); (iv) a Monte-Carlo sampling based SOF synthesis.
With the implemented SOF controls, the H2 norms∥∥∥T̂zw(ξ)

∥∥∥
2

defined in (4) vary with ξ, as depicted in

Figure 1. Both the worst-case robust SOF control and
the 10-degree PCE-based nominal SOF control succeed
in stabilizing the closed-loop system, whilst the 2-
degree PCE-based nominal SOF control fails. It can be
also seen that compared to the worst-case robust SOF
control, although the 10-degree PCE-based nominal
SOF control gives a larger worst-case H2 norm for
ξ = −1, it indeed achieves a smaller averaged H2 norm.

In order to illustrate the benefit of the PCE-based guar-
anteed cost SOF control synthesis (39), a 2-degree PCE
is adopted to introduce relatively larger PCE truncation
errors on purpose. The bisection method in Algorithm

x
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Fig. 1. Variations of the H2 norm
∥∥∥T̂zw(ξ)
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2

generated by

different SOF controls.

1 is applied to find the minimal robustifying parameter
ρmin that results in a robustly stabilizing control gain.
First, the lower bound ρL and the upper bound ρU are
chosen as ρL = 0 and ρU = 9.5 × 10−2, respectively.
After 11 bisection iterations, the gap between ρL and
ρU becomes smaller than 5 × 10−5. Then Algorithm
1 terminates, and the minimal robustifying parameter
ρmin is 2.8 × 10−2. As a result, the obtained SOF gain

is
[
−21.86 16.36

]>
. When performing the posterior

stability analysis, the moment relaxation problem of
Piga and Benavoli (2017) is formulated with the support
information [−1, 1] and the first four orders of moments.
The obtained upper probability bound of instability for
all probability measures with the same support [−1, 1]
is 0.00003%, thus robust closed-loop stability is guar-
anteed according to Property 1 of Piga and Benavoli
(2017). In Fig. 1, the 10-degree PCE-based nominal
SOF control achieves an averaged H2 norm 7.7 and a
worst-case H2 norm 21.9. In comparison, the 2-degree
PCE-based guaranteed cost SOF control synthesis with
ρ = 2.8 × 10−2 results in a similar averaged H2 norm
8.1, although it obtains a much larger worst-case H2

norm 289.6. With the robustifying parameter increased
to ρ = 6.8 × 10−2, the achieved worst-case H2 norm is
reduced to 12.9, which is almost the same as that of the
worst-case robust SOF control, while its averaged H2

norm has a minor increase to 9.2.

In terms of computational cost, the proposed PCE-based
SOF synthesis problems (33) and (39) are compared
with the Monte-Carlo sampling based synthesis (45).
As shown in Fig. 2, the solution to the Monte-Carlo
sampling based formulation (45) converges to Kmc =
[−19.6 14.9 ]> with 104 samples. The number of involved
decision variables is 60004. In contrast, both two PCE-
based synthesis problems (33) and (39) have a signif-
icantly reduced problem size. To be specific, the 10-
degree PCE-based nominal SOF synthesis (33) produces
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Fig. 2. The dependence of both components of the SOF
controller on the number of Monte-Carlo samples (circles:
the average of 100 trials with different samples of ξ; error
bars: the range of 100 trials). The control gain converges
when using 104 samples.

almost the same control gain KPCE = [−19.5 14.8 ]> as
Kmc, which involves only 508 decision variables. In the 2-
degree PCE-based guaranteed cost SOF synthesis (39),
the number of decision variables further reduces to 45.

Similarly to the performance comparison of fourH2 SOF
controls, the corresponding H2 DOF controls are also
implemented. As depicted in Fig. 3, the results are very
similar to Fig. 1. It can be seen again that the 2-degree
PCE-based guaranteed cost DOF synthesis with ρ =
2.5 × 10−2 produces almost the same H2 performance
as the 5-degree PCE-based nominal DOF synthesis, but
it has a much larger H2 norm as ξ approaches -1. By
increasing ρ to 6.8×10−2, the 2-degree PCE-based guar-
anteed cost DOF synthesis achieves a slightly smaller
worst-case H2 norm than the worst-case DOF synthesis
result. This is due to the conservatism introduced by
using polytopic uncertainty description to overbound
the polynomial parametric uncertainty in the simulation
example (46).

8 Conclusions

Polynomial chaos based H2 static and dynamic output-
feedback control synthesis methods are presented for
systems subject to time-invariant probabilistic para-
metric uncertainties and white noises. The effect of poly-
nomial chaos expansion truncation errors is captured by
time-varying norm-bounded uncertainties, and explic-
itly taken into account by adopting a guaranteed cost
control approach. This strategy further leads to rigorous
analysis of the condition under which the stability of
the PCE-transformed system ensures the closed-loop
stability of the original system, which has not been
achieved by existing PCE-based controls. Instead of
using high-degree expansions to alleviate the effect

xi
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generated by

different DOF controls.

of truncation errors, our proposed polynomial chaos
based synthesis allows the use of relatively low-degree
expansions by tuning a robustifying parameter, which
significantly reduces computational cost.

A Proof of Proposition 1

Between the PCE truncation error x̃(t, ξ) and the PCE
approximation Φ>x (ξ)X(t), there exists a non-unique
transformation matrix M(t, ξ) ∈ Rnx×nx such that

x̃(t, ξ) = M(t, ξ)Φ>x (ξ)X(t) (A.1)

holds for all t. Then, it can be derived from (25) and
(A.1) that

Ry(t) = Eξ{Φy(ξ)C(ξ)x̃(t, ξ)} = Fy(t)X(t) (A.2)

with Fy(t) = Eξ{Φy(ξ)C(ξ)M(t, ξ)Φ>x (ξ)}.

From (13), (21), (22), and (24c), the truncation error
ũ(t, ξ) = u(t, ξ)− Φ>u (ξ)U(t) can be expressed as

ũ(t, ξ) = Ky(t, ξ)− Φ>u (ξ)KY(t)

= KC(ξ)
(
Φ>x (ξ)X(t) + x̃(t, ξ)

)
+ KDww(t)

− Φ>u (ξ)K (CX(t) +Dww(t) + Ry(t))

= KC(ξ)x̃(t, ξ)−KΦ>y (ξ)Ry(t)

+ K
(
C(ξ)Φ>x (ξ)− Φ>y (ξ)C

)
X(t).

(A.3)
Note that the third equation in (A.3) leverages

Φ>u (ξ)K = KΦ>y (ξ), KDw = Φ>u (ξ)KDw (A.4)

which are derived by using the definitions of Φ>u (ξ),
Φ>y (ξ),K, andDw in (13) and (24c) as well as the orthog-

onality in (7):

Φ>s (ξ) =
[
Ins φ1(ξ)Ins · · · φNp(ξ)Ins

]
,

Dw = Eξ

{(
φ>(ξ)⊗ Iny

)
Dw

}
=
[
D>w 0nyNp×ny

]>
,

where s represents u or y. By substituting (A.2), (A.3),
and (A.4) into (16), it follows that

rx(t, ξ) = Acl(ξ)x̃(t, ξ)−B(ξ)KΦ>y (ξ)Fy(t)X(t)

+ B(ξ)K
(
C(ξ)Φ>x (ξ)− Φ>y (ξ)C

)
X(t)

(A.5)
with Acl(ξ) = A(ξ)+B(ξ)KC(ξ). From the above deri-
vations, Rx(t) in (19d) can be rewritten as

Rx(t) = Eξ{Φx(ξ)rx(t, ξ)} = Fx(t)X(t)

with

Fx(t) = Eξ

{
Φx(ξ)Acl(ξ)M(t, ξ)Φ>x (ξ)

− Φx(ξ)B(ξ)KΦ>y (ξ)Fy(t)

+Φx(ξ)B(ξ)K
(
C(ξ)Φ>x (ξ)− Φ>y (ξ)C

)}
.

(A.6)

Remark 3 The independence of Dw on ξ is used for
deriving (A.4). Without such an assumption, Rx(t) =
Fx(t)X(t) + Fww(t) is then derived with

Fw = Eξ

{
Φx(ξ)B(ξ)

(
KDw(ξ)− Φ>u (ξ)KDw

)}
,

where Dw(ξ) depends on ξ. In this case, the basic idea
for the PCE-based synthesis method in Sections 4.2 and
4.3 is still applicable, except that minor modifications are
needed to cope with the additional uncertainty Fww(t).
Derivations for this case are not included for the sake of
brevity.

B Proof of Theorem 1

A sketch of the proof is as follows, and please refer to
Section 4.7 in Skelton et al. (1997) for more details. By

multiplying (38) with
[
X>(t) ω>cs(t)

]
to its left and with[

X>(t) ω>cs(t)
]>

to its right, we can derive

V̇ (X(t)) < −Z>(t)Z(t)

+ µcs

(
ω>cs(t)ωcs(t)−ψ>cs(t)ψcs(t)

)
.

(B.1)

from (35), where V (X(t)) is the quadratic Lyapunov
function defined as V (X(t)) = 1

2X>(t)PcsX(t). Since
‖∆x(t)‖ ≤ 1 and ‖∆y(t)‖ ≤ 1, we also have

ω>cs(t)ωcs(t)−ψ>cs(t)ψcs(t) ≤ 0. (B.2)
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Then, it is easy to see V̇ (X(t)) < 0 from (B.1) and
(B.2), which proves the sufficient condition for quadratic
stability.

Now, we prove the necessity condition implied by
quadratic stability. According to the concept of
quadratic stability, there exists a Lyapunov function
V1(X(t)) = 1

2X>(t)P1X(t) with P1 > 0 such that

V̇1(X(t)) < 0 holds. Then, using V̇1(X(t)) < 0 and
(B.2), there exist sufficiently small positive scalars ε1

and ε2 such that

V̇1(X(t)) + ε1

(
ψ>cs(t)ψcs(t)− ω>cs(t)ωcs(t)

)
+ ε2Z

>(t)Z(t) < 0.
(B.3)

Dividing both sides of (B.3) by ε2, and define Pcs =
ε−1

2 P1 and µcs = ε1ε
−1
2 , we can derive the necessary

condition (38) from (B.3) by using (35).

Next, we derive an upper bound for the H2 cost func-
tion (31) by using (B.1) that is obtained from (38). Let
Xk(t), Zk(t), ψcs,k(t), and ωcs,k(t) denote the impulse
responses to the unit-impulse input w(t) = ekδ(t) in
the kth coordinate of w. Integrating both sides of (B.1)
from t = 0 to∞ leads to

V (Xk(0)) = V (Xk(0))− V (Xk(∞))

>

∫ ∞
0

‖Zk(t)‖22 dt

+ µcs

∫ ∞
0

∥∥ψcs,k(t)
∥∥2

2
− ‖ωcs,k(t)‖22 dt

≥
∫ ∞

0

‖Zk(t)‖22 dt,

In the above derivation, the first equality is due to
V (Xk(∞)) = 0 implied by the quadratic stability,

while the second inequality comes from
∥∥ψcs,k(t)

∥∥2

2
≥

‖ωcs,k(t)‖22 according to (35c) and (37). Since the
impulse response to the unit-impulse w(t) = ekδ(t) is
equivalent to the initial state response under the initial
condition Xk(0) = Bw,cek, the upper bound of the H2

cost function (31) is

nw∑
k=0

∫ ∞
0

‖Zk(t)‖2 dt <
nw∑
k=0

V (Xk(0))

=

nw∑
k=0

(Bw,csek)>PcsBw,csek

= trace{B>w,csPsBw,cs}. 2

C Proof of Theorem 2

For internal stability analysis, the additive noise w(t) is
set to zero. According to Theorem 1, the solution to (39)

stabilizes the PCE-transformed closed-loop system (28),
thus we have X(∞) = 0. This implies that the PCE-
transformed approximated state x̂(t, ξ) = Φ>x (ξ)X(t)
goes to zero as time goes to infinity. To show the internal
mean square stability of the original system (1) under
the synthesized SOF control, the PCE truncation error
x̃(t, ξ) needs to be discussed in the following.

For any normalized orthogonal PCE bases, the first basis
function φ0(ξ) in (12) is equal to 1 (Xiu, 2010). There-
fore, using the definition of Φs(ξ) in (13), (34) implies

Eξ{‖rs(t, ξ)‖22} ≤
Np∑
i=0

Eξ

{
φ2
i (ξ) ‖rs(t, ξ)‖22

}
= Eξ

{
‖Φs(ξ)rs(t, ξ)‖22

}
≤ ρ2

s ‖X(t)‖22 .
(C.1)

As such, combining (25), (A.5) and (C.1) gives

Eξ{‖Acl(ξ)x̃(∞, ξ)‖22} = 0, Eξ{‖C(ξ)x̃(∞, ξ)‖22} = 0,

which can be further expressed as

Eξ


∥∥∥∥∥
[
Acl(ξ)

C(ξ)

]
x̃(∞, ξ)

∥∥∥∥∥
2

2

 = 0. (C.2)

Since the detectability of (A(ξ),C(ξ)) for any ξ ∈ Ξ

implies that
[
A>(ξ) C>(ξ)

]>
has full column rank (see

Theorem 3.4 in Zhou et al. (1996)), the matrix[
Acl(ξ)

C(ξ)

]
=

[
I B(ξ)K

0 I

][
A(ξ)

C(ξ)

]

is also of full column rank for any ξ ∈ Ξ. Consequently,
(C.2) leads to

Eξ

{
‖x̃(∞, ξ)‖22

}
= 0,

which further implies

Eξ

{
‖x(∞, ξ)‖22

}
= Eξ

{∥∥Φ>x (ξ)X(∞) + x̃(∞, ξ)
∥∥2

2

}
= Eξ

{
‖x̃(∞, ξ)‖22

}
= 0

due to X(∞) = 0.

All the above analysis shows that under the condi-
tion specified in Theorem 2, the stability of the PCE-
transformed closed-loop system (28) indeed ensures

Eξ

{
‖x(∞, ξ)‖22

}
= 0, i.e., the internal mean square

stability of the original system (1) under control.
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Kočvara, M., Stingl, M., 2012. PENNON: Software for
linear and nonlinear matrix inequalities, in: Anjos,
M.F., Lasserre, J.B. (Eds.), Handbook on Semidefi-
nite, Conic and Polynomial Optimization. Springer,
New York, pp. 755–791.

Lee, D.H., Joo, Y.H., Tak, M.H., 2015. Periodically time-
varying memory static output feedback control design
for discrete-time LTI systems. Automatica 52, 47–54.

Lefebvre, T., De Belie, F., Crevecoeur, G., 2020. A
framework for robust quadratic optimal control with
parametric dynamic model uncertainty using poly-
nomial chaos. Optimal Control Applications and
Methods 41, 833–848.

Li, H., Zhang, D., 2007. Probabilistic collocation method
for flow in porous media: Comparisons with other
stochastic methods. Water Resources Research 43,
W09409.

Luchtenburg, D.M., Brunton, S.L., Rowley, C.W., 2014.
Long-time uncertainty propagation using generalized
polynomial chaos and flow map composition. Journal
of Computational Physics 274, 783–802.

Lucia, S., Paulson, J.A., Findeisen, R., Braatz, R.D.,
2017. On stability of stochastic linear systems
via polynomial chaos expansions, in: Proceedings of
American Control Conference, pp. 5089–5094.

Nandi, S., Singh, T., 2018. Chance-constraint-based
design of open-loop controllers for linear uncertain
systems. IEEE-ASME Transactions on Mechatronics
23, 1952–1963.

Paulson, J.A., Harinath, E., Foguth, L.C., Braatz, R.D.,
2015. Nonlinear model predictive control of systems
with probabilistic time-invariant uncertainties, in:
Proceedings of 5th IFAC Conference on Nonlinear
Model Predictive Control, pp. 16–25.

Paulson, J.A., Mesbah, A., 2019. An efficient method
for stochastic optimal control with joint chance
constraints for nonlinear systems. International
Journal of Robust and Nonlinear Control 29, 5017–
5037.

Petersen, I.R., Tempo, R., 2014. Robust control of
uncertain systems: classical results and recent devel-
opments. Automatica 50, 1315–1335.

Piga, D., Benavoli, A., 2017. A unified framework for
deterministic and probabilistic D-stability analysis of
uncertain polynomial matrices. IEEE Transactions on
Automatic Control 62, 5437–5444.

Rosa, T.E., Morais, C.F., Oliveira, R.C., 2018. New
robust LMI synthesis conditions for mixed gain-

xiv



scheduled reduced-order DOF control of discrete-time
LPV systems. International Journal of Robust and
Nonlinear Control 28, 6122–6145.

Rosenblatt, M., 1952. Remarks on a multivariate trans-
formation. The Annuals of Mathematical Statistics
23, 470–472.

Sadabadi, M.S., Peaucelle, D., 2016. From static output
feedback to structured robust static output feedback:
A survey. Annual Reviews in Control 42, 11–26.

Salavati, S., Grigoriadis, K., Franchek, M., 2019. Recip-
rocal convex approach to output-feedback control
ofuncertain LPV systems with fast-varying input
delay. International Journal of Robust and Nonlinear
Control 29, 5744–5764.

Scherer, C., Gahinet, P., Chilali, M., 1997. Multiob-
jective output-feedback control via LMI optimization.
IEEE Transactions on Automatic Control 42, 896–
911.

Shen, D., Lucia, S., Wan, Y., Findeisen, R., Braatz,
R.D., 2017. Polynomial chaos-basedH2-optimal static
output feedback control of systems with probabilistic
parameter uncertainties, in: Proceedings of 20th IFAC
World Congress, pp. 3595–3600.

Skelton, R.E., Iwasaki, T., Grigoriadis, K.M., 1997. A
unified algebraic approach to control design. Taylor
& Francis, London.

Tempo, R., Calafiore, G., Dabbene, F., 2013. Random-
ized Algorithms for Analysis and Control of Uncertain
Systems (2nd edition). Springer-Verlag, London.

VanAntwerp, J., Braatz, R.D., 2000. A tutorial on linear
and bilinear matrix inequalities. Journal of Process
Control 10, 363–385.

Xiu, D., 2010. Numerical Methods for Stochastic
Computations: A Spectral Method Approach.
Princeton University Press, New Jersey.

Xiu, D., Karniadakis, G.E., 2002. The Wiener–Askey
polynomial chaos for stochastic differential equations.
SIAM Journal on Scientific Computing 24, 619–644.

Yin, Y., Liu, Y., Teo, K.L., Wang, S., 2018. Event-
triggered probabilistic robust control of linear systems
with input constrains: By scenario optimization
approach. International Journal of Robust and
Nonlinear Control 28, 144–153.

Zhou, K., Doyle, J.C., Glover, K., 1996. Robust and
Optimal Control. Prentice-Hall, New Jersey.

xv


