
State-of-charge dependent equivalent circuit model
identification for batteries using sparse Gaussian

process regression

Kesen Fana, Yiming Wana,b,∗, Benben Jiangc,d

aSchool of Artificial Intelligence and Automation, Huazhong University of Science and
Technology, Wuhan 430074, China

bKey Laboratory of Image Processing and Intelligent Control, Huazhong University of
Science and Technology, Ministry of Education, China

cCenter for Intelligent and Networked Systems, Department of Automation, Tsinghua
University, Beijing 100084, China

dBeijing National Research Center for Information Science and Technology, Tsinghua
University, Beijing 100084, China

Abstract

Due to their ease of implementation, equivalent circuit models (ECMs) of bat-

teries are widely used in battery management systems. Generally, ECM param-

eters vary with operating conditions, thus how such parameter dependencies are

addressed substantially influences the accuracy of an ECM over a wide operat-

ing range. In this paper, we identify an ECM whose parameters have nonlin-

ear dependence on state-of-charge (SOC). By transforming the SOC-dependent

ECM into a linear parameter varying (LPV) input-output model, we propose a

non-parametric sparse Gaussian process regression (GPR) approach, which al-

leviates the difficulty of specifying parametric functional SOC-dependencies of

model parameters. The proposed approach derives the posterior distributions

of ECM parameters, thus is capable to provide both parameter estimates and

their associated uncertainties. The computational cost over large datasets is

significantly reduced by adopting the sparse GPR. The proposed approach is

applied to the above LPV model with two noise model structures, i.e., white

and colored noises. Identification results using experimental data illustrate the
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efficacy of the proposed approach. The use of colored noise enhances robustness

under different noise levels, and achieves higher output prediction accuracy over

experimental datasets.

Keywords: Equivalent circuit model; state-of-charge dependent parameters;

linear parameter varying system; sparse Gaussian process regression

1. Introduction

Batteries are essential components in various applications such as portable

devices, power grids, and hybrid or electric vehicles [1, 2, 3]. To ensure safety

and reliability, an advanced battery management system (BMS) is needed to

monitor battery states and optimize its performance. All these functions rely5

on accurate battery models.

Existing battery models in literature can be classified into three categories:

electrochemical model, data-driven model, and equivalent circuit model (ECM)

[4, 5]. The ECM relies on connected circuit elements to represent the dominating

electrochemical processes within a battery cell. Due to its structural simplicity10

and computational efficiency, the ECM has been widely used by BMSs. To

capture nonlinear battery dynamics over a wide operating range, a nonlinear

ECM is developed in [6, 7, 8, 9, 10] by allowing its parameters depend on state-

of-charge (SOC), temperature, or current load.

To account for the above parameter dependencies on time-varying operating15

conditions, one popular approach adopts the linear ECM and performs online

adaptive parameter estimation via recursive least-squares or Kalman filtering,

see [11, 12, 13] for a non-exhaustive list of references. Another line of research

aims at identifying functional relations of the above parameter dependencies

to construct a nonlinear ECM. For this purpose, a straightforward approach20

is to identify multiple linear ECMs at a finite number of operating conditions,

and then interpolates these linear ECM parameters to construct lookup ta-

bles or parametric functional relations over a wide operating range [6, 14]. In

contrast, the alternative approach directly estimates the parametric functional
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relations of the above ECM parameter dependencies by formulating an identi-25

fication problem that minimizes the averaged squared output prediction error

[7, 8, 9]. With the nonlinear parameter dependencies, the resulting identifica-

tion problem is solved by resorting to metaheuristic algorithms [9] or nonlinear

least-squares optimization [10]. When restricting the ECM parameter depen-

dencies to be linear or affine, the obtained identification problem can be more30

efficiently solved by the least-squares or subspace methods [7, 8]. A common

limitation of the above approaches is that it is non-trivial to determine suit-

able parametrized structures of the ECM parameter dependencies on operating

conditions, as they may vary with the battery chemistry or age. An improper

parametrized structure or under-parameterization results in parameter estima-35

tion bias, while over-parametrization may increase the variance of the identified

model.

To address the above limitations of the parametric approaches in [7, 8, 9], we

propose a non-parametric Gaussian process regression (GPR) approach in this

paper to identify the SOC-dependent ECM. The proposed approach avoids or40

alleviates the difficulty of specifying the parametrized SOC-dependency struc-

tures, and provides a measure of uncertainty for its parameter estimates. Firstly,

two linear parameter varying (LPV) models are derived from the SOC-dependent

ECM: a LPV-ARX (autoregressive with exogenous inputs) model with a white

noise term, and a LPV-ARMAX (autoregressive moving average with exoge-45

nous inputs) model with a first-order colored noise term. Inspired by [15], such

SOC-dependencies of LPV model coefficients are described by non-parametric

Gaussian processes (GPs), which are different from the parametrized functional

forms adopted in [7, 8, 9]. With the GPs’ hyperparameters learned from data,

the posterior Gaussian distributions of the LPV model coefficients are computed50

to determine the ECM parameter estimates and their associated uncertainties.

To be computationally tractable for large datasets, our proposed GPR based

identification approach employs the sparse GPR in [16] that introduces a sparse

approximation to the GP prior. The comparison between the use of LPV-ARX

and LPV-ARMAX models is made by using experimental data. With the pro-55
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posed sparse GPR approach, the LPV-ARMAX model identification achieves

smaller output prediction errors over different test datasets, and is more robust

at a high noise level, compared to using the LPV-ARX model.

This journal paper extends the authors’ previous conference paper [17] in the

following aspects: 1) instead of using the exact GPR in [17], it adopts the sparse60

GPR approach which reduces computation complexity for large datasets; 2)

instead of simply assuming white noises in [17], it additionally takes into account

colored noises, which results in better identification performance at a high noise

level; 3) instead of using only simulation data in [17], it uses experimental data

to demonstrate the efficacy of the proposed approach.65

To the best of our knowledge, there have been limited studies so far on

using GPR for battery ECM identification, although GPR has been recently

applied to SOC estimation, state-of-health estimation, and lifetime prediction

for batteries [18, 19, 20, 21].

The rest of this paper is organized as follows. Section 2 states the SOC-70

dependent ECM identification problem. Section 3 briefly reviews sparse GPR.

In Section 4, the sparse GPR approach to identify the SOC-dependent ECM is

presented. Identification results via experimental data are discussed in Section

5. The concluding remarks are given in Section 6.

Notations. For a matrix A, diag{A} represents a diagonal matrix that has75

the same diagonal elements as A. A matrix denoted by diag
[
A1 A2 · · · An

]
is block diagonal, with {Ai}ni=1 being its diagonal blocks. It becomes a diagonal

matrix if allAi’s are scalars. For a square matrixA, |A| denotes its determinant.

The identity matrix of dimension n is In.

2. Model description and problem statement80

In this section, we describe the continuous-time first-order ECM, and derive

the corresponding discrete-time LPV model. Then, we state the SOC-dependent

ECM parameter identification problem to be solved.
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Figure 1: SOC-dependent first-order ECM

2.1. SOC-dependent equivalent circuit model

Due to its simplicity and accuracy, the first-order ECM in Fig. 1 is widely

adopted in battery applications. The open circuit voltage (OCV) is denoted by

Voc. The internal resistance Rs is used to represent the ohmic polarization phe-

nomenon. The polarization resistance R1 and polarization capacitance C1 are

used to describe electrochemical polarization and concentration polarization, re-

spectively, which reflect the transient dynamics under current excitation. Based

on the circuit theory, the first-order ECM is expressed as:

dV1
dt

=
I

C1(z)
− V1
R1(z)C1(z)

, (1a)

Vt = Voc(z)−Rs(z)I − V1, (1b)

where I is the load current with a positive value at discharge, Vt is the terminal85

voltage, V1 denotes the overpotential voltage across R1, and z represents SOC.

In the above ECM, both model parameters and OCV have nonlinear dependence

on the SOC z, as denoted by Rs(z), R1(z), C1(z), and Voc(z). Such dependence

of ECM parameters on SOC has been reported in [7, 9, 22], and will be illustrated

later in Section 5.90

Assumption 1. Both the SOC z and the OCV-SOC relationship Voc(z) are

available, which is a common assumption in the ECM identification literature

such as [6, 11]. The SOC z is estimated with sufficient accuracy, using Coulomb
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counting with an accurate initial SOC. The OCV-SOC relationship Voc(z) is

obtained from the OCV-SOC test [23].95

Remark 1. Without loss of generality, we assume a constant temperature reg-

ulated by the thermal management system or temperature chamber, and do not

consider a higher-order ECM. If the considered battery is operated under highly

dynamic load changes and a wide range of temperature, the proposed GPR based

identification method can be slightly modified to address a high-order ECM with100

dependence on both SOC and temperature.

To identify ECM parameters from sampled measurements, the continuous-

time ECM in (1a) is transformed into a discrete-time model. With a sufficiently

small sampling interval Ts, the current input and SOC between samples are

assumed constant [7, 11, 24]. Then, it is derived from (1a) that

V1,k = R1(zk)
(

1− e−
Ts
τ(zk)

)
Ik−1 + e

− Ts
τ(zk)V1,k−1, (2)

with τ(zk) = R1(zk)C1(zk), V1,k = V1(kTs), Ik = I(kTs) and zk = z(kTs). With

Vt,k = Vt(kTs) representing the sampled terminal voltage, define

Vp,k = Voc(zk)− Vt,k = V1,k +Rs(zk)Ik. (3)

Note that the second equation in (3) is derived from (1b). By substituting (3)

into (2), we obtain the following LPV model:

Vp,k = θ1(zk)Vp,k−1 + θ2(zk, zk−1)Ik−1 + θ3(zk)Ik

≈ θ1(zk)Vp,k−1 + θ2(zk)Ik−1 + θ3(zk)Ik,
(4)

where the above SOC-dependent coefficients are defined as

θ1(zk) = e
− Ts
τ(zk) , θ3(zk) = Rs(zk), (5a)

θ2(zk, zk−1) = R1(zk)
(

1− e−
Ts
τ(zk)

)
−Rs(zk−1)e

− Ts
τ(zk) , (5b)

θ2(zk) = R1(zk)
(

1− e−
Ts
τ(zk)

)
−Rs(zk)e

− Ts
τ(zk) . (5c)
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In the second line of (4), the approximation θ2(zk, zk−1) ≈ θ2(zk) is adopted,

since the difference between zk and zk−1 is assumed negligible due to a suffi-

ciently small sampling interval ( |zk − zk−1| ≤ 6 × 10−4 for the experimental

datasets in Section 5 ).105

Both the continuous-time ECM (1) and its transformed discrete-time LPV

model (4) do not include any uncertainties. Considering noises in the measure-

ment of Vt,k and inexactness of the OCV-SOC relation Voc(zk), Vp,k determined

by Vp,k = Voc(zk) − Vt(zk) in (3) is contaminated with inevitable errors. To

describe such uncertainties, let Vp,k and Ṽp,k denote the true value and its esti-

mate, and (3) is modified as

Ṽp,k = Voc(zk)− Vt,k = Vp,k + ek (6)

with ek being the lumped error in Ṽp,k. Then, the LPV model (4) becomes

Ṽp,k = θ1(zk)Ṽp,k−1 + θ2(zk)Ik−1 + θ3(zk)Ik + εk (7)

with the noise term

εk = ek − θ1(zk)ek−1. (8)

2.2. Problem statement

Due to their dependence on SOC, the ECM parameters vary with time. Var-

ious recursive identification methods have been reported in literature to adap-

tively estimate these time-varying ECM parameters [11, 12, 13]. However, such

methods do not quantify the functional relations between these ECM parameters110

and SOC. In this paper, we aim at identifying the nonlinear SOC-dependencies

of the internal resistance Rs, the polarization resistance R1, and the time con-

stant τ . Depending on how the noise term in (8) is addressed, the following two

LPV models are considered:

1) As a common practice in the ECM identification literature [12], εk is

approximated as a zero-mean Gaussian white noise denoted by vk, and its

variance σ2 is unknown. In this case, (7) turns into the LPV-ARX model

Ṽp,k = θ1(zk)Ṽp,k−1 + θ2(zk)Ik−1 + θ3(zk)Ik + vk. (9)
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2) As inspired by (8), εk is approximated as a zero-mean first-order colored

noise expressed by εk = vk–cvk−1, where vk is a zero-mean Gaussian white

noise with an unknown variance σ2, and c is a constant to be determined.

The use of colored noise to improve model accuracy has been reported in

literature such as [13, 25]. In this case, (7) becomes the LPV-ARMAX

model

Ṽp,k = θ1(zk)Ṽp,k−1 + θ2(zk)Ik−1 + θ3(zk)Ik + vk − cvk−1. (10)

Since zk and Voc(zk) are available according to Assumption 1, Ṽp,k is com-115

puted from the measured Vt,k according to (6). In this paper, we use {Ik, Ṽp,k, zk}

to identify the LPV-ARX model (9) or the LPV-ARMAX model (10), and then

derive the nonlinear dependence of Rs, R1, and τ on the SOC z.

3. Overview of sparse Gaussian Process Regression

A GP model is a probability distribution over functions, such that any finite120

number of function values follow the joint Gaussian distribution [26]. As a

non-parametric Bayesian approach, GPR computes a posterior distribution over

models, which in turn implies predicted output distributions. With a training

dataset of size N , the exact GPR performs training at the computational cost

O(N3), and computes each predicted mean and variance at the costs of O(N)125

and O(N2), respectively [27]. These computations become intractable as the

data size N grows to a few thousands. To address this issue, the sparse GPR

proposed in [16] adopts an approximated GP prior, i.e., the Fully Independent

Training Conditional (FITC) approximation, which will be utilized in this paper

and concisely reviewed in this section.130

Mathematically, a GP model can be written as [26]

f(x) ∼ GP(mf (x), κ(x, x′)), (11a)

tk = f(xk) + nk, nk ∼ N (0, σ2), (11b)

where xk is the input, tk is the target output, nk is the Gaussian white noise

independent from xk, and N (·, ·) denotes a Gaussian distribution with the spec-
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ified mean and covariance. In (11a), f(x) is described as a GP with mean func-

tion mf (x) and covariance function (i.e., kernel function) κ(x, x′). The mean

function mf (x) can be determined according to the a priori knowledge, or set135

to zero if no a priori knowledge is available. For the kernel function κ(x, x′), a

typical choice is the squared exponential kernel function κ(x, x′) = λe−
(x−x′)2

2δ2 .

Then, the hyperparameters for (11b) are Θ := [λ, δ, σ].

For the sake of brevity, only the case of zero mean, i.e., mf (x) = 0, is

reviewed in the rest of this section. In a training dataset of size N , let x =140

{xi}Ni=1, t = {ti}Ni=1, and f = {f(xi)}Ni=1 represent the inputs, observed target

outputs, and the corresponding function values. The GPR problem aims at

predicting the value of f(x∗) at a new input x∗. Instead of using the exact GP

prior, the sparse GPR uses an approximated GP prior by introducing the pseudo

inputs xu = {x′i}Mi=1 and their associated pseudo targets u = {f(x′i)}Mi=1, with145

M � N . Note that the pseudo targets u are not necessarily a subset of the

available observations t.

With the pseudo targets u, the exact joint distribution of f and f∗ = f(x∗)

can be expressed as

p(f , f∗) =

∫
p(f , f∗|u)p(u)du (12)

with p(u) = N (0,Ku,u) and [Ku,u]ij = κ(x′i, x
′
j). Assume that f and f∗ are

conditionally independent given u. Then, the joint distribution in (12) can be

approximated as

p(f , f∗) ≈ q(f , f∗) =

∫
q(f |u)q(f∗|u)p(u)du (13)

where q(f |u) and q(f∗|u) are two approximate conditional distributions. In

particular, the FITC approximation assumes [16, 27]

q(f |u) = N (Kf,uK
−1
u,uu, diag{Kf,f −Qf,f}), (14)

q(f∗|u) = p(f∗|u) = N (K∗,uK
−1
u,uu, K∗,∗ −Q∗,∗), (15)
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with [Ku,f ]ji = [Kf,u]ij = κ(xi, x
′
j), [Kf,f ]ij = κ(xi, xj), K∗,∗ = κ(x∗, x∗),

K>∗,u = Ku,∗ =
[
κ(x′1, x∗) κ(x′2, x∗) . . . κ(x′M , x∗)

]>
,

Q>b,a = Qa,b = Ka,uK
−1
u,uKu,b, a and b denote f or ∗ .

From (13)–(15), the joint distribution of t = f + n and f∗ and the marginal

distribution of t are approximated as

q(t, f∗) = N

0,

Qf,f + Γ Qf ,∗

Q∗,f K∗,∗

 , (16)

q(t) = N (0,Qf,f + Γ), (17)

with

Γ = diag{Kf,f −Qf,f}+ σ2IN .

The hyperparameters Θ are learned from data by maximizing the marginal

likelihood q(t) in (17). The corresponding objective function is

g(Θ) =− 1

2
t>(Qf,f + Γ)−1t− 1

2
log |Qf,f + Γ|

=− 1

2
t>(Γ−1 − Γ−1Kf,uΩ−1Ku,fΓ−1)t

− 1

2
log |Ω|+ 1

2
log |Ku,u| −

1

2
log |Γ| ,

(18)

where Ω is defined as

Ω = Ku,fΓ−1Kf,u +Ku,u, (19)

and | · | denotes the determinant of a square matrix. The second equality in

(18) is obtained by applying the matrix inversion lemma to (Qf,f + Γ)−1 and

applying the matrix determinant lemma to |Qf,f + Γ| [28].150

With the above learned hyperparameters, f∗ at the new input x∗ is predicted

from t by deriving the conditional distribution q(f∗|t) from the joint distribution
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q(t, f∗) in (16), i.e.,

E[f∗|t] = Q∗,f (Qf,f + Γ)−1t

= K∗,uΩ−1Ku,fΓ−1t, (20a)

cov[f∗|t] = K∗,∗ −Q∗,f (Qf,f + Γ)−1Qf ,∗

= K∗,∗ −Q∗,∗ +K∗,uΩ−1Ku,∗, (20b)

where the second equations in (20a) and (20b) are also obtained by applying

the matrix inversion lemma to (Qf,f + Γ)−1, and Ω is defined in (19).

With (18) and (20), the M -by-M matrix Ω, instead of the N -by-N matrix

Qf,f+Γ, is inverted. In the training phase that involves (18), the computational

cost for the sparse GPR is O(NM2), which is much lower than O(N3) for the155

exact GPR. As for the prediction phase using (20), Ω−1Ku,fΓ−1t and Ω−1 can

be precomputed, given the learned hyperparameters and the available data t.

Then, the computational costs for the predicted mean (20a) and variance (20b)

are reduced toO(M) andO(M2), respectively, which are much lower thanO(N)

and O(N2) when using the exact GPR. In conclusion, compared to the exact160

GPR, using the sparse GPR results in significantly reduced computational costs

if M � N .

4. Identification of SOC-dependent ECM parameters

In this section, a sparse GPR approach is proposed to identify the SOC-

dependent ECM parameters in two steps: the LPV-ARX or LPV-ARMAX165

model coefficients {θi(z)}3i=1 are first identified, and then used to derive the

ECM parameters Rs(z), R1(z) and τ(z) according to (5).

Inspired by [15], the sparse GPR approach describes the model coefficients

{θi(z)}3i=1 in (9) or (10) as three independent GPs. Rather than using zero-

mean priors, we would like to use non-zero mean functions {mi(z)}3i=1 which

are estimates from conventional least-squares identification. This helps reduce

parameter estimation errors and model prediction errors, as indicated by our

previous results in [17]. With these above non-zero means {mi(z)}3i=1, we derive

xi



the following LPV-ARX and LPV-ARMAX models from (9) and (10) for the

identification purpose:

yk = θ1(zk)x1,k + θ2(zk)x2,k + θ3(zk)x3,k + vk, (21)

yk = θ1(zk)x1,k + θ2(zk)x2,k + θ3(zk)x3,k + vk − cvk−1, (22)

with

θ1(zk) = θ1(zk)−m1(zk), θi(zk) = βi[θi(zk)−mi(zk)], i = 2, 3, (23)

yk = Ṽp,k −m1(zk)Ṽp,k−1 −m2(zk)Ik−1 −m3(zk)Ik, (24)

x1,k = Ṽp,k−1, x2,k =
Ik−1
β2

, x3,k =
Ik
β3
. (25)

By doing so, {θi(z)}3i=1 become zero-mean GPs, which can be addressed by the

reviewed derivations in (14)–(20). Moreover, since the original model coefficients

in (9) and (10) take values at vastly different orders of magnitudes, the positive170

scale factors {βi}3i=2 are introduced such that the transformed model coefficients

{θi(z)}3i=1 are at the same order of magnitude, which helps improve numerical

condition for solving the identification problem.

4.1. Sparse GPR approach to LPV-ARX model identification

In this subsection, we consider the transformed LPV-ARX model (21) whose

model coefficients {θi(zk)}3i=1 are three independent GPs with zero means and

covariance functions

cov
[
θi(zj), θi(zl)

]
= κi(zj , zl) = λie

−
(zj−zl)

2

2δ2
i , i = 1, 2, 3. (26)

Suppose we have the training dataset

D = {x1,j , x2,j , x3,j , zj , yj}Nj=1.

In the following, the FITC approximation in Section 3 is applied to the three

GPs {θi(zk)}3i=1. First, the pseudo dataset is selected as {zu,u1,u2,u3}:

zu = {z′j}Mj=1, ui = {θi(z′j)}Mj=1, i = 1, 2, 3,

xii



with M � N . Here, we use the same pseudo inputs zu for the three GPs

{θi(zk)}3i=1, and choose them to be equally spaced over the considered SOC

range. With the same procedure that derives (17) from (14)–(16), the FITC

approximation to the a priori distribution of each coefficient vector

θi =
[
θi(z1) θi(z2) · · · θi(zN )

]>
is

q(θi) = N
(
0,Qi

θ,θ
+ diag

{
Ki
θ,θ
−Qi

θ,θ

})
, i = 1, 2, 3,

with

[Ki
θ,u

]jl = κi(zj , z
′
l), [Ki

u,u]jl = κi(z′j , z
′
l),

Qi
θ,θ

= Ki
θ,u

(Ki
u,u + ω2IM )−1Ki

u,θ
. (27)

The regularization factor ω 6= 0 is added to ensure the invertibility of Ki
u,u +175

ω2IM . The value of ω will be determined together with hyperparameters.

Next, we proceed to the measured output. According to (21), the output

vector y =
[
y1 y2 . . . yN

]>
is expressed as

y = X θ + v (28)

with

θ =
[
θ
>
1 θ

>
2 θ

>
3

]>
, v =

[
v1 · · · vN

]>
, (29)

X =
[
X1 X2 X3

]
, Xi = diag

[
xi,1 · · · xi,N

]
. (30)

Here, diag
[
xi,1 · · · xi,N

]
is a diagonal matrix whose diagonal elements are

{xi,j}Nj=1. Therefore, the approximate joint distribution of y in (28) is

q(y) = N
(
0,XQθ,θX

>
+ Λ

)
, (31)

Λ = Xdiag
{
Kθ,θ −Qθ,θ

}
X
>

+ Σ, (32)

Qθ,θ = diag
[
Q1
θ,θ

Q2
θ,θ

Q3
θ,θ

]
, (33)

Kθ,θ = diag
[
K1
θ,θ

K2
θ,θ

K3
θ,θ

]
,
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where [Ki
θ,θ

]jl = κi(zj , zl), and Σ = σ2IN is the covariance matrix of the noise

v in (29). It can be seen that Qθ,θ in (33) is a block diagonal matrix whose

diagonal blocks are
{
Qi
θ,θ

}3

i=1
. From (27), we rewrite Qθ,θ in (33) as

Qθ,θ = Kθ,u

(
Ku,u + ω2I3M

)−1
Ku,θ (34)

with K>
u,θ

= Kθ,u = diag
[
K1
θ,u

K2
θ,u

K3
θ,u

]
, and

Ku,u = diag
[
K1
u,u K2

u,u K3
u,u

]
. (35)

Note that both Xdiag
{
Kθ,θ −Qθ,θ

}
X
>

and Λ in (32) are diagonal matrices,

according to (30) and Σ = σ2IN .

Let the hyperparameters in (26) be denoted by λ = [λ1 λ2 λ3] and δ =

[δ1 δ2 δ3]. With a training dataset, the hyperparameters λ and δ, the regular-

ization factor ω, and the noise standard deviation σ are determined by maxi-

mizing the marginal likelihood q(y) in (31). Similarly to (18), the formulated

objective function to be optimized is derived as

g1(λ, δ, ω, σ)

= − 1

2
y>
(
Λ−1 −Λ−1XKθ,uΠ−1Ku,θX

>
Λ−1

)
y

− 1

2

(
log |α1Π| − log

∣∣α2(Ku,u + ω2I3M )
∣∣+ log |α3Λ|

)
,

(36)

with

Π = Ku,θX
>

Λ−1XKθ,u +Ku,u + ω2I3M . (37)

In (36), amplification factors {αi}3i=1 are introduced to address the risk of nu-

merical underflow associated with the three log-determinant terms. This just180

adds a constant to the objective function (36), thus does not affect the optimal

solution.

For a new input z∗, the joint probability distribution of the output vector y

and the model coefficients θ∗ =
[
θ1(z∗) θ2(z∗) θ3(z∗)

]>
is

q

 y
θ∗

 = N

0,

XQθ,θX> + Λ Qy,∗

Q∗,y K∗,∗

, (38)
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with

Q∗,y = (Qy,∗)
> = Q∗,θX

>
, (39a)

Q∗,θ = K∗,u
(
Ku,u + ω2I3M

)−1
Ku,θ, (39b)

K∗,u = (K∗,u)> = diag
[
K1
∗,u K2

∗,u K3
∗,u

]
,

Ki
u,∗ = (Ki

∗,u)> =
[
κi(z∗, z

′
1) · · · κi(z∗, z

′
M )
]>

,

K∗,∗ = diag
[
κ1(z∗, z∗) κ2(z∗, z∗) κ3(z∗, z∗)

]
.

From (38), given the output vector y, the posterior mean and variance of the

model coefficients θ∗ are

E
[
θ∗|D

]
= Q∗,y

(
XQθ,θX

>
+ Λ

)−1
y, (40a)

cov
[
θ∗|D

]
= K∗,∗ −Q∗,y

(
XQθ,θX

>
+ Λ

)−1
Qy,∗. (40b)

Theorem 1. The posterior mean and variance of the transformed model coef-

ficients θ∗ in (40) are equivalently expressed as

E[θ∗|D] = K∗,uΨy, (41a)

cov[θ∗|D] = K∗,∗ −Q∗,∗ +K∗,uΠ−1Ku,∗, (41b)

with Π defined in (37),

Ψ = Π−1Ku,θX
>

Λ−1, (42a)

Q∗,∗ = K∗,u(Ku,u + ω2I3M )−1Ku,∗. (42b)

The detailed proof is referred to Appendix A.

Thanks to the sparse structure of X in (30) and the diagonal structure of

Λ in (32), the computational costs of solving (36) and computing the posterior185

mean and variance in (41) are O(NM2), O(M), and O(M2), respectively, which

is the same as described in the last paragraph of Section 3. Note that Ψy and

Π−1 are precomputed before calculating the posterior prediction in (41).

4.2. Sparse GPR approach to LPV-ARMAX model identification

In this subsection, the sparse GPR approach proposed for the LPV-ARX190

model identification is extended to the LPV-ARMAX model (22) such that the
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colored noise vk − cvk−1 is taken into account.

Still, the derivations in Section 4.1 can be applied to the LPV-ARMAX

model (22). However, the noise covariance matrix Σ in (32) becomes tridiagonal,

i.e.,

Σ = σ2



1 + c2 −c

−c 1 + c2 −c
. . .

. . .
. . .

−c 1 + c2 −c

−c 1 + c2


(43)

for the colored noise vector
[
v1 − cv0 v2 − cv1 · · · vN − cvN−1

]>
, rather

than a diagonal matrix Σ = σ2IN for the white noise vector. In this case, Λ

in (32) for the LPV-ARMAX model also becomes a tridiagonal matrix, since195

Xdiag
{
Kθ,θ −Qθ,θ

}
X
>

remains diagonal according to (30). To address the

above tridiagonal structure of Λ and the additional hyperparameter c in (43), we

will revised the training phase as follows. Using the learned hyperparameters,

computing the posterior predictions remains the same as in (41a) and (41b).

To exploit the tridiagonal structure of Λ in the following computations, we

first perform the LU decomposition [28] for Λ:

Λ = LΛUΛ, (44)

LΛ =


1
p2 1

p3 1

. . .
. . .
pN 1

 , UΛ =


q1 −cσ2

q2 −cσ2

. . .
. . .
qN−1 −cσ2

qN

 , (45)

q1 = σ2(1 + c2) + b1, pi = − cσ
2

qi−1
,

qi = σ2(1 + c2) + bi + picσ
2, i = 2, . . . , N,

where bi is the ith diagonal element of the diagonal matrixXdiag
{
Kθ,θ −Qθ,θ

}
X
>

.200

Note that LΛ and UΛ in (45) are banded matrices whose bandwidths are both

1.
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Next, we consider training hyperparameters. Unlike the LPV-ARX model,

there is an extra unknown constant parameter c in (43) to be determined. To

train hyperparameters including c, the objective function

g2(λ, δ, ω, σ, c) = g1(λ, δ, ω, σ) + γ(c− c0)2 (46)

is modified from g1(λ, δ, ω, σ) in (36) by including an extra regularization term

γ(c− c0)2, where γ > 0 is a weighting coefficient, and c0 is predetermined to be

the priori approximate of θ1(z) according to (8). With the regularization term205

in (46), the difference between c and c0 is penalized.

With the LU decomposition of Λ in (44), the computational cost of inverting

the M -by-M matrix Π in (37) is analyzed as follows. According to

Ku,θX
>

Λ−1XKθ,u = Ku,θX
>
U−1Λ L−1Λ XKθ,u, (47)

we first perform the LU decomposition to derive UΛ and LΛ at the computa-

tional cost O(N), then compute Ku,θX
>
U−1Λ and L−1Λ XKθ,u by exploiting

the banded structure of UΛ and LΛ, both at the cost O(MN) [29]. The mul-

tiplication of Ku,θX
>
U−1Λ and L−1Λ XKθ,u in (47) is obtained at the cost210

O(NM2), and the inverse of Π is calculated at the cost O(M3). Therefore,

the overall cost of computing Π−1 is still O(NM2) since M � N . For this

reason, the computational cost of training hyperparameters by maximizing (46)

is O(NM2). As for the posterior prediction, the equations in (41) are still valid

for the LPV-ARMAX model, whose computations are divided into two steps.215

Firstly, Ψy and Π−1 are precomputed, which needs to utilize the LU decom-

position of Λ as mentioned before. With such precomputation, calculating the

posterior mean and variance for (41a) and (41b) are still at the costs O(M) and

O(M2), respectively.

4.3. From LPV model coefficients to ECM parameters220

From the transformed model coefficients θ∗ =
[
θ1(z∗) θ2(z∗) θ3(z∗)

]>
obtained in Section 4.1 or 4.2, the posterior means and variances of the original
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model coefficients θ∗ =
[
θ1(z∗) θ2(z∗) θ3(z∗)

]>
are

E[θ∗|D] = m∗ + SE[θ∗|D], cov[θ∗|D] = Scov[θ∗|D]S> (48)

according to (23), withm∗ = [m1(z∗) m2(z∗) m3(z∗)]
> and S = diag[1 β−12 β−13 ].

According to (5), the ECM parameters {Rs, R1, τ} can be expressed as

Rs(z∗) = θ3(z∗), τ(z∗) = − Ts
ln θ1(z∗)

,

R1(z∗) =
θ2(z∗) + θ3(z∗)θ1(z∗)

1− θ1(z∗)
.

(49)

Together with (48), their posterior means and variances are derived as

E[Rs(z∗)|D] = µ3(z∗), (50a)

cov[Rs(z∗)|D] = cov[ θ3(z∗)|D], (50b)

E[τ(z∗)|D] ≈ − Ts
lnµ1(z∗)

, (50c)

cov[τ(z∗)|D] ≈ T 2
s

[ lnµ1(z∗)]4µ2
1(z∗)

cov[ θ1(z∗)|D], (50d)

E[R1(z∗)|D] ≈ µ2(z∗) + µ3(z∗)µ1(z∗)

1− µ1(z∗)
, (50e)

cov[R1(z∗)|D] ≈ J(z∗)cov[θ∗|D]J>(z∗), (50f)

where µi(z∗) denotes the ith element of E[θ∗|D] in (48), cov[ θi(z∗)|D] is the ith

diagonal element of the covariance matrix cov[θ∗|D] given in (48), and J(z∗) is

defined as

J(z∗) =
[
∂R1

∂θ1
∂R1

∂θ2
∂R1

∂θ3

]∣∣∣
θi(z∗)=µi(z∗),i=1,2,3

, (51)

with R1 in (49). Note that τ(z∗) and R1(z∗) are actually non-Gaussian dis-

tributed due to their nonlinear dependence on {θi(z∗)}3i=1 in (49). Here we

adopt the first-order Taylor expansions of the functional dependencies τ(z∗)

and R1(z∗) to derive the approximated means and covariances in (50c)–(50f).

4.4. Summary of the proposed identification algorithm225

Based on the OCV-SOC relationship Voc(z) and available data Vt and I

over the considered SOC range, the proposed sparse GPR based identification

algorithm is summarized below.
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Step 1. Prepare identification data {Ik, Ṽp,k, zk}Nk=1

1a) For 1 ≤ k ≤ N , estimate the SOC zk from the current input by Coulomb230

counting, determine the corresponding OCV Voc(zk), and compute the

LPV model output Ṽp,k = Voc(zk)− Vt,k;

1b) Determine the mean functions {mi(z)}3i=1 from preliminary identification

results or the a prior knowledge (how we do it in our case study is described

in the first paragraph of Section 5.1), select the scale factors {βi}3i=2 in235

(23), and compute the transformed regressors in (25) and the transformed

output in (24).

Step 2. Learn hyperparameters of the sparse GPR model

2a) Choose zero means and covariance functions in (26) for the GPs of LPV

model coefficients {θi(z)}3i=1;240

2b) Select the pseudo inputs zu = {z′i}Mi=1 to be equally spaced over the SOC

range in the dataset;

2c) Determine the hyperparameters of the LPV-ARX or LPV-ARMAX model

by maximizing (36) or (46), respectively, where {αi}3i=1, γ, and c0 are

properly specified. Multiple initial guesses can be used to alleviate the245

problem of local maxima.

Step 3. Calculate SOC-dependencies of ECM parameters

3a) Obtain the posterior mean and variance functions of {θi(z∗)}3i=1 and

{θi(z∗)}3i=1 according to (41) and (48), respectively.

3b) Obtain the approximated posterior mean and variance functions of Rs(z∗),250

τ(z∗), and R1(z∗) according to (50) and (51).

Note that the above algorithm for the LPV-ARMAX model differs from

that for the LPV-ARX model in only Steps 2c) and 3a). Firstly, the objective

functions (36) and (46) for learning hyperparameters in Step 2c) are different.

Secondly, the matrix Λ in (32) is tridiagonal for the LPV-ARMAX model due255

to Σ in (43), whilst Λ is diagonal for the LPV-ARX model. The LU decompo-

sition of Λ in (44) is additionally performed for the LPV-ARMAX model when
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Figure 2: The OCV-SOC curve fitted by a 5-degree polynomial.

learning hyperparameters in Step 2c) and computing the posterior mean and

variance in Step 3a).

5. Identification results using experimental datasets260

This section presents the identification results of the proposed GPR ap-

proach using experimental data of 18650 LiNiMnCoO2/Graphite lithium-ion

cells released by Center for Advanced Life Cycle Engineering at University of

Maryland [23]. All experimental data used in this section were collected at

the room temperature 25◦C. The cell capacity is 2Ah. With data from the265

incremental-current OCV test, the OCV-SOC curve is approximated by the 5-

degree polynomial Voc(z) = 6.77z5 − 21.6z4 + 25.9z3 − 13.6z2 + 3.51z + 3.23,

which is shown in Fig. 2.

The Federal Urban Driving Schedule (FUDS) dataset is used to identify

the SOC-dependent ECM parameters. To test the robustness of identification270

algorithms, two FUDS datasets at different noise levels are prepared: the one

at a low noise level is the original FUDS dataset of size N = 9700, and the

other one at a high noise level is generated by artificially adding a white noise

xx



onto the measured terminal voltage Vt in the original FUDS dataset, where the

added white noise has zero mean and standard deviation 2× 10−3 volt.275

For comparison, the following four algorithms are implemented to identify

the SOC-dependent ECM over the 10–80% SOC range:

1) Multi-ARX algorithm, i.e., the multiple ARX model based approach.

Firstly, we divide the 10–80% SOC range into a number of intervals of

equal length. Over each SOC interval, a time-invariant ARX model in280

the form of (9) is identified by using the MATLAB function arx, and its

model coefficients are used to derive the corresponding linear ECM pa-

rameters according to (49) [6, 14]. Then, these linear ECMs over all SOC

intervals are linearly interpolated to given the estimates of the functional

SOC-dependencies Rs(z), R1(z), and C1(z).285

2) Multi-ARMAX algorithm, i.e., the multiple ARMAX model based ap-

proach. The same procedures in a) are used, but with the MATLAB

function armax applied to identify a time-invariant ARMAX model in the

form of (10) over each SOC interval [25, 13].

3) SGPR-LPV-ARX algorithm, i.e., the proposed sparse GPR approach us-290

ing the LPV-ARX model (21), as presented in Sections 4.1 and 4.4.

4) SGPR-LPV-ARMAX algorithm, i.e., the proposed sparse GPR approach

using the LPV-ARMAX model (22), as presented in Sections 4.2 and 4.4.

Since the true ECM parameters of the experimental lithium-ion cells are

unknown, the associated parameter estimation errors cannot be computed to295

evaluate the identification performance of the above algorithms. Instead, we

consider the following two aspects for performance evaluation:

Firstly, for each algorithm, we examine the consistency of its obtained ECM

parameter estimates at different noise levels. For this purpose, each algorithm is

applied to two FUDS datasets contaminated with low and high levels of voltage300

measurement noises, as mentioned in the second paragraph of this section.

Secondly, for comparison among all algorithms, we evaluate the accuracy

of the identified ECMs by root mean square errors (RMSEs) of one-step pre-
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dicted terminal voltages using test datasets. Specifically, three test datasets

under different dynamic current profiles are used, i.e., the US06 Highway Driv-

ing Schedule, the Dynamic Stress Test (DST), and the Beijing Dynamic Stress

Test (BJDST) [23]. The one-step predicted terminal voltage is computed as

V̂t,k = Voc(zk)− V̂p,k, V̂p,k = θ1(zk)Ṽp,k−1 + θ2(zk)Ik−1 + θ3(zk)Ik and Ṽp,k−1 =

Voc(zk−1) − Vt,k−1, where Vt,k is the true terminal voltage, zk is determined

by Coulomb counting according to Assumption 1. The corresponding RMSE is

defined as

RMSE =

√√√√ 1

L

L∑
k=1

(
Vt,k − V̂t,k

)2
,

with L being the number of samples in a test dataset. A smaller RMSE indicates

higher model accuracy.

5.1. Results of multi-ARX and SGPR-LPV-ARX algorithms

In this subsection, the above two ARX-based algorithms multi-ARX and

SGPR-LPV-ARX are compared, with the following parameter settings. For the

multi-ARX algorithm, the 10-80% SOC range is divided into 10 intervals of

equal length. The SGPR-LPV-ARX algorithm summarized in Section 4.4 is

implemented as follows. In Step 1b), the a priori mean functions {mi(z)}3i=1

are assumed to be constant, and they are determined by identifying a time-

invariant ARX model using the entire FUDS dataset over the 10-80% SOC

range. Specifically, the a priori means obtained at the low noise level are

m1(z) = 0.95,m2(z) = −0.0668,m3(z) = 0.0716, while those obtained at the

high noise level are m1(z) = 0.92,m2(z) = −0.0644,m3(z) = 0.0716. In addi-

tion, β2 = β3 = 50 is set. In Step 2b), the pseudo inputs zu consist of M = 36

equally spaced SOCs over the 10-80% SOC range. Since the pseudo inputs zu

have a substantially reduced size compared to N = 9700 input samples in the

FUDS dataset, the computational cost of the sparse GPR approach is signifi-

cantly lower than that of the exact GPR approach, as pointed out at the end

of Section 3. In Step 2c), the amplification factors in (36) are α1 = α2 = 103

and α3 = 1. The optimization solver fmincon in MATLAB is used to maximize
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(36) by adopting the Newton method. The hyperparameters learned at the low

noise level are

λ1 = 0.06, λ2 = 5.27, λ3 = 6.57, σ = 5.45× 10−4,

δ1 = 0.40, δ2 = 0.42, δ3 = 0.63, ω = 2.79× 10−3,

while those learned at the high noise level are

λ1 = 0.68, λ2 = 4.43, λ3 = 3.35, σ = 2.82× 10−3,

δ1 = 0.76, δ2 = 0.07, δ3 = 0.43, ω = 9.73× 10−3.

The ECM parameter estimates obtained by the multi-ARX algorithm at low305

and high noise levels are depicted in Fig. 3. With this algorithm, one set of

ECM parameters is identified over each SOC interval, and their values indeed

vary with SOC. The estimates of R1 and τ at the low noise level are inconsistent

with those at the high noise level. The reason is that the ARX model does not

explicitly consider the time correlation of the colored noise εk in (8). Due to this310

reason, the ECM parameter estimates at the high noise level are more biased,

since the simplified white noise assumption becomes less valid. As a result, the

ECM identified at the high noise level gives much larger RMSEs of the one-step

predicted terminal voltages under test datasets, as listed in Table 1.

Due to the same reason as above, the SGPR-LPV-ARX algorithm also gives315

inconsistent estimates at different noise levels. This can be seen from the poste-

rior means of the LPV-ARX model coefficients {θi(z)}3i=1 and the ECM param-

eters {Rs(z), R1(z), τ(z)} in Fig. 4. Moreover, compared to the results at the

low noise level, the larger confidence regions of θ1(z), θ2(z), R1(z), and τ(z) at

the high noise level indicate significant increase in their estimation uncertain-320

ties. Similarly to the multi-ARX algorithm, the SGPR-LPV-ARX algorithm

also results in more biased estimates as the noise level increases. Consequently,

the SGPR-LPV-ARX algorithm gives much larger RMSEs of the one-step pre-

dictions from the ECM identified at the high noise level, as shown in Table

1.325
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Figure 3: Identification results of the multi-ARX algorithm at low and high noise levels. Each

triangle represents an estimate at one SOC interval, and linearly interpolation is used to

construct the functional SOC-dependence of each ECM parameter.

Table 1: Using ECMs identified at different noise levels, RMSEs (unit: volt) of one-step

predicted terminal voltages are compared under BJDST, US06, and DST conditions.

Identification

method

Test datasets

BJDST US06 DST

With identification dataset at a low noise level

Multi-ARX 1.191× 10−3 1.391× 10−3 8.691× 10−4

SGPR-LPV-ARX 1.167× 10−3 1.418× 10−3 8.722× 10−4

Multi-ARMAX 1.190× 10−3 1.389× 10−3 8.684× 10−4

SGPR-LPV-ARMAX 7.063× 10−4 9.926× 10−4 6.968× 10−4

With identification dataset at a high noise level

Multi-ARX 2.187× 10−3 1.463× 10−3 1.453× 10−3

SGPR-LPV-ARX 2.002× 10−3 1.476× 10−3 1.386× 10−3

Multi-ARMAX 1.053× 10−3 1.159× 10−3 7.649× 10−4

SGPR-LPV-ARMAX 7.176× 10−4 9.863× 10−4 6.945× 10−4
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Figure 4: Identification results of the SGPR-LPV-ARX algorithm at low and high noise levels.
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It can be further seen from Table 1 that the multi-ARX and SGPR-LPV-

ARX algorithms have similar prediction performance at either low or high noise

level, although they both result in much larger RMSEs of one-step predictions

when they are applied at the high noise level.

It should be noted in Fig. 4 that the confidence regions of R1(z) and τ(z) are330

much wider than those of θ1(z) and θ2(z). Since the estimation uncertainties

of {θi(z)}3i=1 shown in Fig. 4 are relatively small, the wider confidence regions

of R1(z) and τ(z) are attributed to the inevitable transformation (49) from

{θi(z)}3i=1 to the ECM parameters. The estimates of R1(z) and τ(z) derived

from (49) are more sensitive to the estimation uncertainties of {θi(z)}3i=1. In335

particular, since θ1(z∗) is close to 1, ln θ1(z∗) and 1 − θ1(z∗) are both close

to zero, hence the estimation uncertainties are magnified when they propagate

from the estimates of {θi(z)}3i=1 to R1(z) and τ(z) via (49).

5.2. Results of multi-ARMAX and SGPR-LPV-ARMAX algorithms

In this subsection, it will be shown that by explicitly addressing the colored340

noise εk in (8), the multi-ARMAX and SGPR-LPV-ARMAX algorithms give

better identification performance than their ARX counterparts in Section 5.1,

and the SGPR-LPV-ARMAX algorithm achieves the best performance.

The parameter settings for implementing the multi-ARMAX and SGPR-

LPV-ARMAX algorithms are the same as described in the first paragraph of

Section 5.1, except that the tuning parameters presented in (46) are different,

i.e., α1 = α2 = 104, α3 = 1, c0 = 0.9 and γ = 104. The obtained hyperparame-

ters for the SGPR-LPV-ARMAX algorithm are

λ1 = 0.07, λ2 = 0.64, λ3 = 0.21, σ = 2.06× 10−3,

δ1 = 0.68, δ2 = 0.95, δ3 = 0.71, ω = 1.3× 10−3, c = 0.92,

at the low noise level, and

λ1 = 0.08, λ2 = 0.66, λ3 = 0.89, σ = 2.85× 10−3,

δ1 = 0.64, δ2 = 0.73, δ3 = 0.97, ω = 1.5× 10−3, c = 0.91,
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Figure 5: Identification results of the multiple ARMAX model approach at low and high noise

levels. Each triangle represents an estimate at one SOC interval, and linearly interpolation is

used to construct the functional SOC-dependence of each ECM parameter.

at the high noise level.

As expected, the multi-ARMAX algorithm gives more consistent estimates345

at different noise levels in Fig. 5, compared to the results of the multi-ARX

algorithm depicted in Fig. 3. This is because that the multi-ARMAX algorithm

achieves less biased estimation by taking into account the colored noise εk. As

a result, it can be seen from Table 1 that with the identification dataset at a

high noise level, the ECM identified by the multi-ARMAX algorithm gives much350

smaller prediction errors than those given by the multi-ARX algorithm.

The above observations and conclusions are also true for the comparison

between the SGPR-LPV-ARMAX and SGPR-LPV-ARX algorithms. The pos-

terior means at different noise levels in Fig. 6 are more consistent and less biased

than those given by the SGPR-LPV-ARX algorithm in Fig. 4. Moreover, as355

the noise level becomes higher, the estimation uncertainties indicated by the

confidence regions in Fig. 6 have only a mild increase, compared to the results

given by the SGPR-LPV-ARX algorithm in Fig. 4. All these improvements are

again attributed to coping with the colored noise εk.
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Figure 6: Identification results of the SGPR-LPV-ARMAX algorithm at low and high noise

levels.
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It can be also seen from Table 1 that with identification datasets at both two360

noise levels, the ECM identified by the SGPR-LPV-ARMAX algorithm achieves

the smallest prediction errors, compared to all the other three algorithms.

As shown in Fig. 6, the estimation uncertainties of R1(z) and τ(z) are larger

than those of θ2(z) and θ3(z). This is also due to the increased sensitivity of

R1(z) and τ(z) in (49) to the variations of {θi(z)}3i=1, which has been already365

explained in the last paragraph of Section 5.1.

5.3. Comparison between exact and sparse GPR based algorithms

In this subsection, the proposed SGPR-LPV-ARX and SGPR-LPV-ARMAX

algorithms are compared with their exact GPR based versions, i.e., GPR-LPV-

ARX and GPR-LPV-ARMAX, using datasets at a low noise level. Note that370

GPR-LPV-ARX was reported in [17]. Firstly, we compare their averaged com-

putation time of 1) one iteration of optimizing (36) or (46) in hyperparameter

training and 2) making the posterior prediction (50) at a new SOC condition

z∗. Secondly, we compare their prediction accuracy in terms of one-step pre-

dicted terminal voltages using the same test datasets of Table 1. All algorithms375

are implemented in MATLAB R2020b, on a computer with 2.90GHz CPU and

16GB RAM. It takes more than one hours to implement just one iteration in

optimizing (36) or (46) for the exact GPR over the entire training dataset con-

sisting of 9700 data samples. To avoid such intractable computational load in

the comparison, we use one data segment of 2923 samples over the 50–70% SOC380

range instead.

The parameter settings of the SGPR-LPV-ARX and SGPR-LPV-ARMAX

algorithms are the same as described in Sections 5.1 and 5.2, except that the

pseudo inputs zu consist of M = 11 equally spaced SOCs over 50–70% SOC

range. The parameter settings of the GPR-LPV-ARX and GPR-LPV-ARMAX385

algorithms are the same as their sparse versions. The obtained hyperparameters

are as follows:
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� SGPR-LPV-ARX

λ1 = 2.6× 10−4, λ2 = 4.9× 10−2, λ3 = 8.3× 10−4, σ = 4.1× 10−4,

δ1 = 4.6× 10−2, δ2 = 2.4× 10−1, δ3 = 7.7× 10−3, ω = 6.3× 10−3;

� SGPR-LPV-ARMAX

λ1 = 0.31, λ2 = 0.53, λ3 = 0.82, σ = 3.3× 10−3,

δ1 = 0.92, δ2 = 0.51, δ3 = 0.41, ω = 5.0× 10−3, c = 0.9;

� GPR-LPV-ARX

λ1 = 3.54, λ2 = 3.96× 10−4, λ3 = 58.5, σ = 5.08× 10−4,

δ1 = 8.87, δ2 = 1.76× 10−7, δ3 = 4.91;

� GPR-LPV-ARMAX

λ1 = 0.069, λ2 = 0.45, λ3 = 0.23, σ = 5× 10−3,

δ1 = 0.75, δ2 = 0.084, δ3 = 0.91, c = 0.92.

Table 2: Averaged computation time (unit: second) for exact and sparse GPR based algo-

rithms.

Identification One iteration in Posterior

method training hyperparameter prediction

GPR-LPV-ARX 83.49 2.67× 10−3

SGPR-LPV-ARX 0.88 4.26× 10−5

GPR-LPV-ARMAX 83.40 2.63× 10−3

SGPR-LPV-ARMAX 0.84 4.80× 10−5

The averaged computation time for the above four algorithms are shown in

Table 2, while their prediction RMSEs under test datasets are listed in Table

3. It can be seen that using the sparse GPR results in a huge reduction in the390

computation time, with only a slight loss in prediction performance.
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Table 3: RMSEs (unit: volt) of one-step predicted terminal voltages of exact and sparse GPR

based algorithms under BJDST, US06, and DST conditions.

Identification

method

Test datasets

BJDST US06 DST

GPR-LPV-ARX 1.020× 10−3 1.392× 10−3 8.635× 10−4

SGPR-LPV-ARX 1.048× 10−3 1.384× 10−3 8.909× 10−4

GPR-LPV-ARMAX 6.775× 10−4 9.674× 10−4 6.956× 10−4

SGPR-LPV-ARMAX 7.276× 10−4 9.794× 10−4 6.903× 10−4

6. Conclusions

The ECM parameters generally vary with battery operating conditions. This

imposes a non-trivial difficulty for the ECM identification problem, if the depen-

dencies of ECM parameters on the operating conditions need to be learned from395

data. In this paper, the non-parametric sparse GPR approach is proposed for

the identification of SOC-dependent ECM. It avoids the difficulty of specifying

the parametric functional SOC-dependencies of ECM parameters, and quanti-

fies uncertainties associated with its obtained parameter estimates. Instead of

using the exact GPR, the sparse GPR is adopted in our proposed identification400

approach to significantly reduce the computation complexity over large datasets.

With different noise model structures, both the LPV-ARX and LPV-ARMAX

models are considered. Identification results show that using the LPV-ARMAX

model with a colored noise term enhances robustness to the noise level, and

achieves smaller output prediction errors over test datasets.405

Appendix A. Proof of Theorem 1

According to the matrix inversion lemma, (34), and (37), we have(
XQθ,θX

>
+ Λ

)−1
= Λ−1 −Λ−1XKθ,uΠ−1Ku,θX

>
Λ−1. (A.1)
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From (37), (39), (40a), and (A.1), it is derived that

E[θ∗|D] = K∗,u
(
Ku,u + ω2I3M

)−1 (
Ku,θX

>
Λ−1

−Ku,θX
>

Λ−1XKθ,uΠ−1Ku,θX
>

Λ−1
)
y

= K∗,u
(
Ku,u + ω2I3M

)−1 (
I3M −

(
Π−Ku,u − ω2I3M

)
Π−1

)
·Ku,θX

>
Λ−1y

= K∗,u
(
Ku,u + ω2I3M

)−1
(Ku,u + ω2I3M )Π−1Ku,θX

>
Λ−1y

= K∗,uΠ−1Ku,θX
>

Λ−1y (A.2)

which can be expressed as (41a) with Ψ in (42a).

With the derivations in (A.2), cov
[
θ∗|D

]
in (40b) is rewritten as

cov
[
θ∗|D

]
= K∗,∗ −K∗,uΠ−1Ku,θX

>
Λ−1Qy,∗

= K∗,∗ −K∗,uΠ−1Ku,θX
>

Λ−1XKθ,u

(
Ku,u + ω2I3M

)−1
Ku,∗

= K∗,∗ −K∗,uΠ−1(Π−Ku,u − ω2I3M )
(
Ku,u + ω2I3M

)−1
Ku,∗

= K∗,∗ −K∗,u
(
Ku,u + ω2I3M

)−1
Ku,∗ +K∗,uΠ−1Ku,∗

= K∗,∗ −Q∗,∗ +K∗,uΠ−1Ku,∗

using Q∗,∗ defined in (42b).
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