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Abstract

For lithium-ion batteries, the functional dependence of open circuit volt-
age (OCV) on state of charge (SOC) varies with temperature and aging,
which plays a significant role in accurate SOC estimation and state of health
monitoring. To identify the OCV-SOC curve at a given condition, OCVs
usually need to be either measured by a time-consuming OCV test, or es-
timated with inevitable errors that eventually propagate into the identified
OCV-SOC curve. In this paper, we investigate time-efficient identification
of temperature-dependent OCV-SOC curve from current-voltage data, with-
out measuring or estimating OCVs. In particular, we identify the complete
OCV-SOC curve from data over a partial SOC range at a given tempera-
ture, by fusing available OCV-SOC curve data at other temperatures. In
the proposed approach, a multi-output Gaussian process (MOGP) model
is first built to capture correlations among OCV-SOC curves at different
temperatures, and then used to construct the OCV-SOC curve at the given
temperature. Using experimental datasets, our proposed approach reduces
the root mean square error (RMSE) of OCV predictions by at least 29.4%
compared to three existing methods. Besides, with the updated OCV-SOC
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curve, the RMSE of SOC estimates is reduced by at least 14.0%, compared
to using a non-updated OCV-SOC curve.

Keywords: Lithium-ion battery; equivalent circuit model; open circuit
voltage; state of charge; multi-output Gaussian process.

1. Introduction

With recent developments of electrode materials for energy storage [1, 2,
3, 4, 5], the performance of lithium-ion batteries (LIBs) have been further
improved in cycle life, charge/discharge efficiency, and energy density. Due to
these advantages, LIBs become essential components in various applications
such as portable devices, power grids, and hybrid or electric vehicles [6, 7].
To ensure safety and reliability, an advanced battery management system
(BMS) is required. The OCV (open circuit voltage)-SOC (state of charge)
relationship is vital to BMS due to its importance in SOC estimation [8, 9,
10, 11, 12] and state of health (SOH) monitoring [13, 14, 15, 16].

The OCV-SOC relationship has dependence on operating conditions, such
as temperature and aging [17, 18]. Hence, it is necessary to update the OCV-
SOC curve as the operating condition varies. For this purpose, the OCV
data are usually directly measured by an incremental or low-current OCV
test [19]. In most literature, the OCV-SOC curve is described by a poly-
nomial, exponential, fractional calculus, support vector machine, or neural
network model [10, 13, 20, 21]. Such an OCV-SOC curve model needs to be
completely re-identified at a different operating condition. In particular, [22]
proposes a polynomial OCV-SOC model whose dependence on aging is ex-
plicitly parameterized by just one parameter. By doing so, the model update
for aging involves updating only one parameter in [22]. Instead of identifying
an OCV-SOC curve at one given temperature or aging condition, another
line of research aims at constructing a temperature/aging-dependent OCV-
SOC model using the OCV data collected under a set of temperatures or
aging conditions. In [23], a polynomial model is constructed to express OCV
as a function of SOC and temperature. In [24], a single-output Gaussian
process is learned from multiple OCV-SOC curves under different tempera-
tures to describe the dependence of OCV on SOC and temperature. In [25],
a two-dimensional lookup table is used to represent OCV as a function of
SOC and SOH. With the OCV data covering only a partial SOC range, a
Kalman filtering approach is proposed in [25] to update the above lookup
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table by exploiting correlations between multiple OCV-SOC curves under
different conditions.

All literature mentioned above rely on the availability of the OCV data.
However, it often takes hours or even days for an OCV test to directly mea-
sure OCVs over a partial or the full SOC range. Only a few papers focus
on avoiding such a time-consuming OCV test and investigate time-efficient
identification of the OCV-SOC curve. For this purpose, a two-step scheme is
proposed in [8, 9]: first estimate OCVs from current-voltage measurements
over the full or a partial SOC range, and then identify a polynomial model
for the corresponding full or partial OCV-SOC curve. However, inevitable
errors of the estimated OCVs propagate into the identified OCV-SOC curve,
which cannot be effectively addressed by the above two-step scheme in [8, 9].

Without measuring or estimating OCVs, [26] proposes a migrated equiv-
alent circuit model (ECM) to identify the OCV-SOC curve directly from
current-voltage data. Firstly, the SOC-dependent ECM for a fresh cell is
established as a base model, including the functional dependence of OCV
and ECM parameters on SOC. Then, the migrated ECM is built on the base
model via linear transformation, and the introduced migration factors are
determined using the current-voltage data at a different operating condition.
The updated OCV-SOC curve is included in the identified migrated model.
Although the above migration approach in [26] avoids the error propagation
from estimated OCVs, its achievable performance is inherently limited by
describing the effect of temperature and aging by linear transformation of
the base model.

In this paper, we focus on time-efficient identification of the OCV-SOC
curve using current-voltage data under a given temperature, without mea-
suring or estimating OCVs. In particular, we identify the entire OCV-SOC
curve over the full SOC range from data of a partial charging/discharging
process at the given temperature, by fusing available OCV-SOC curve data
at other temperatures. The proposed approach adopts a multi-output Gaus-
sian process (MOGP) model to capture correlations among OCV-SOC curves
at different temperatures, and predicts OCVs at the given temperature by
the posterior means. The main advantages of our proposed approach are
summarized below.

� It is more time-efficient, because it avoids using a time-consuming OCV
test to collect OCV measurements as in [22, 24, 25].

� It achieves higher accuracy than existing methods that avoid OCV
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tests in OCV-SOC curve identification. Different from the two-step
scheme in [8, 9] that requires OCV estimates, our proposed approach
does not need to estimate OCVs, thus gets rid of propagating OCV
estimation errors into the identified OCV-SOC curve. Moreover, for
accurately describing different degrees of correlations among OCV-SOC
curves at various temperatures, the non-parametric MOGP model in
our proposed approach is more flexible than the parametric migrated
model in [26] with a fixed model structure.

The rest of this paper is organized as follows. Section 2 states the
OCV-SOC curve identification problem. Section 3 briefly reviews the non-
parametric MOGP learning. In Section 4, the proposed MOGP based OCV-
SOC curve identification approach is presented. Identification results via
experimental data are discussed in Section 5. The concluding remarks are
given in Section 6.

Notations. diag
([
b1 b2 · · · bn

])
denotes a n-by-n diagonal matrix whose

i-th diagonal element is bi. For a matrix B, the element at the i-th row and
j-th column of B is denoted as [B]i,j. In denotes a n-by-n identity matrix,
while 0n denotes a n-dimensional column vector.

2. Model description and problem statement

In this section, we first describe the first-order ECM, and then state the
OCV-SOC curve identification problem to be solved.

2.1. The first-order ECM

Due to its simplicity and accuracy, the first-order ECM in Fig. 1 is widely
adopted in battery applications [8]. The internal resistance Rs is used to rep-
resent the ohmic polarization phenomenon. The polarization resistance R1

and polarization capacitance C1 are used to describe electrochemical polar-
ization and concentration polarization, which reflect the transient dynamics
under current excitation. The OCV-SOC curve, Rs, R1 and C1 vary with
temperature [27, 28].Based on the circuit theory, the first-order ECM at a
fixed temperature is expressed as:

dV1

dt
=

I

C1

− V1

R1C1

, (1a)

Vt = Voc(z)− IRs − V1, (1b)
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where I is the load current with a positive value at discharge, Vt is the termi-
nal voltage, V1 denotes the overpotential voltage across R1, Voc(z) represents
OCV as a function of the SOC z.

Remark 1. For the sake of notation simplicity, we do not consider the de-
pendence of Rs, R1, and C1 on SOC in this paper, which suffices to give an
accurate ECM in most cases. As mentioned in [29, 30, 31], these three ECM
parameters generally vary with SOC only in the low SOC range (0-20%), but
have no obvious dependence on SOC in the main operating range (20-100%).
By following the method in [32], our proposed approach can be extended to
the case of SOC-dependent ECM parameters without difficulty.

To identify ECM parameters from sampled measurements, the continuous-
time ECM in (1a) is transformed into a discrete-time model. Let Ts denote
the sampling interval. By assuming constant current input over each sam-
pling period [(k − 1)Ts, kTs], it can be then derived from (1a) that

V1,k = R1

(
1− e−

Ts
τ

)
Ik−1 + e−

Ts
τ V1,k−1, (2)

with τ = R1C1, V1,k = V1(kTs), Ik = I(kTs). By substituting (1b) into (2),
we obtain the following regression model:

Vt,k = θ0,k + θ1Vt,k−1 − θ2Ik−1 − θ3Ik + ζk,

≈ θ0,k + θ1Vt,k−1 − θ2Ik−1 − θ3Ik, (3)

where Vt,k = Vt(kTs) represents the sampled terminal voltage, zk = z(kTs),
Voc,k = Voc(zk), and the model coefficients {θi}3i=0 are defined as

θ0,k = θ0(zk) = (1− θ1)Voc,k, (4a)

θ1 = e−
Ts
τ , θ3 = Rs, (4b)

θ2 = R1 (1− θ1)−Rsθ1, (4c)

ζk = θ1(Voc,k − Voc,k−1). (4d)

Since |zk − zk−1| is usually sufficiently small over a short sampling interval
Ts, |Voc,k − Voc,k−1| is close to zero [18]. Also considering that θ1 is less than
1, ζk in (4d) is therefore sufficiently small to be negligible.
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Figure 1: The first-order ECM

2.2. Problem statement

In this paper, we aim at identifying the complete OCV-SOC curve over
the full SOC range from current-voltage data of a partial charging/discharging
process at a given temperature T1. In doing so, we avoid the time-consuming
OCV test to measure OCVs, and get rid of estimating OCVs whose estima-
tion errors propagate into the identified OCV-SOC curve.

In the above problem, the data over a partial SOC range at the given
temperature T1 are denoted by {I1,V1

t , z
1}, where I1 = {I1k}

n1
k=1 and V1

t =
{V 1

t,k}
n1
k=1 are the current and voltage measurements, and z1 = {z1k}

n1
k=1 rep-

resents the associated SOCs that are assumed known and can be obtained
via an SOC estimation method. Assume that OCV tests at a limited num-
ber of temperatures {Ti}mi=2 other than T1 are also performed offline. Hence
the generated OCV-SOC curve data {zi,Vi

oc}mi=2 over the full SOC range at
temperatures {Ti}mi=2 are available, with zi = {zik}

ni
k=1 and Vi

oc = {V i
oc,k}

ni
k=1

denoting the SOCs and the corresponding OCVs at temperature Ti, respec-
tively. The above OCV-SOC curve identification problem will be solved by
fusing the partial charging/discharging data {I1,V1

t , z
1} at temperature T1

and the OCV-SOC curve data {zi,Vi
oc}mi=2 at other temperatures {Ti}mi=2.

3. Preliminaries on multi-output Gaussian process

In this section, we briefly review MOGP, which is the basis to develop our
proposed approach in the next section. More details of MOGP are referred
to [33, 34].

MOGP is an extension of SOGP [35] by taking into account correla-
tions among multiple outputs. Consider a vector-valued function h(a) =
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[
h1(a) h2(a) . . . hm(a)

]⊤
with m correlated outputs, where hi(a) is the i-

th output with respect to input a. For the i-th output channel, we obtain
the input data {ail}

ni
l=1 and the associated output data {hi(ail)}

ni
l=1, with the

data length ni. For the sake of simplicity, we assumes that the input data of
different output channels are identical with the same data length n, i.e.,

{a1l }
n1
l=1 = {a2l }

n2
l=1 = · · · = {aml }nm

l=1 = {al}nl=1. (5)

Note that this assumption can be relaxed, and MOGP can be easily general-
ized to the case where the input data of different channels are non-identical.

In MOGP, the m outputs of h(a) are modeled as m dependent Gaussian
processes with the covariance function

cov(hi(al), h
j(ak)) = ρijκa(al, ak). (6)

The above covariance function has a separable structure: ρij captures the cor-
relation between i-th and j-th output, and κa(al, ak) describes the covariance
with respect to input a for a given output, which can be any valid kernel func-
tion with hyperparameters η. Other types of covariance functions for a gen-

eral MOGP can be referred to [33]. Let hi =
[
hi(a1) hi(a2) . . . hi(an)

]⊤
denote the stacked i-th output data vector, with ai defined in (5). Then

h =
[
h⊤

1 h⊤
2 . . . h⊤

m

]⊤
represents the output data vector of the vector-valued

function h(a).
With the covariance function (6), the joint probability distribution of the

output data vector h is expressed as

p(h) = N (0mn, Kh), (7a)

Kh = ρ⊗Ka + Σ⊗ In, (7b)

where ⊗ represents the Kronecker product, Σ = diag
([
σ2
1 σ2

2 . . . σ2
m

])
with σi being the standard deviation of the measurement noise of the i-th
output, Ka is a n-by-n covariance matrix whose (l, k)-th element is [Ka]lk =
κa(al, ak), and ρ is the label covariance matrix describing the correlations
between different outputs with its (i, j)-th element being ρij. Since ρ is a
non-negative definite matrix, ρ can be expressed as follows using Cholesky
factorization:

ρ = LL⊤, L =


L11

L21 L22
...

...
. . .

Lm1 Lm2 . . . Lmm

, (8)
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with L being a lower-triangular matrix.
From (7), the joint distribution p(h) is parameterized by {Lij} in (8) for ρ,

the noise variances {σ2
i } in Σ, and the hyperparameters η associated withKa.

This set of hyperparameters L, η,Σ can be obtained via maximum likelihood
estimation with respect to p(h) in (7), which is equivalent to minimizing

gh(L, η,Σ) = h⊤K−1
h h+ log(Kh).

After determining the hyperparameters L, η,Σ, the joint distribution of
h and the i-th output hi(a∗) at a given input a∗ is

p

([
h

hi(a∗)

])
= N

([
0mn

0

]
,

[
Kh Ki

h,∗
Ki

∗,h Ki
∗,∗

])
, (9)

where Kh is defined in (7b), and

(Ki
h,∗)

⊤ = Ki
∗,h =

[
ρi1 ρi2 . . . ρim

]
⊗ k∗,h,

k∗,h =
[
κa(a∗, a1) κa(a∗, a2) . . . κa(a∗, am)

]
,

Ki
∗,∗ = ρiiκa(a∗, a∗).

According to the Bayesian formula, the posterior distribution of hi(a∗) given
h can be derived from (9), which is still Gaussian with its posterior mean
and variance as

E[hi(a∗)|h] = Ki
∗,hK

−1
h h, (11a)

cov[hi(a∗)|h] = Ki
∗,∗ −Ki

∗,hK
−1
h (Ki

∗,h)
⊤. (11b)

It can be seen that the posterior mean of hi(a∗) in (11a) is a linear combina-
tion of h, which means that MOGP uses available output data to estimate
the i-th output hi(a∗) by exploiting correlations between different output
channels.

4. OCV-SOC curve identification using MOGP

In this section, we identify the complete OCV-SOC curve from current-
voltage data over a partial SOC range at a given temperature T1. As depicted
in Fig. 2, our proposed approach relies on MOGP learning and prediction to
exploit both the current-voltage data {I1,V1

t , z
1} over a partial SOC range at

temperature T1 and the OCV-SOC curve data {zi,Vi
oc}mi=2 over the full SOC

viii



Multi-output GP (14)(15) Random coefficients (17)
Correlations among 

OCV-SOC curves

at different temperatures

Joint distribution (18)-(21)

Learn hyperparameters: (22)

Identify OCV-SOC curve at temperature 

(23)(24) (25) (26)(27)

Regression model (12)

Current-voltage data at 

OCV-SOC curve data at 

Figure 2: Flowchart of the proposed MOGP approach.

range at other temperatures {Ti}mi=2. It first identifies the model coefficients
in (3), and then derives the OCV-SOC curve at temperature T1. Our pro-
posed approach achieves time-efficient identification of the OCV-SOC curve
at temperature T1 by avoiding the time-consuming OCV test.

4.1. Identification of model coefficients using MOGP

For the following derivations, the regression model (3) at temperature T1

is rewritten as

V 1
t,k = θ10(zk) + θ11x

1
1,k + θ12x

1
2,k + θ13x

1
3,k + e1k, (12)

with the white noise term e1k ∼ N (0, σ2
1), and

x1
1,k = V 1

t,k−1, x
1
2,k = −I1k−1, x

1
3,k = −I1k . (13)

The superscript “1” in (12) and (13) indicates variables at temperature T1.
Since the OCV-SOC curves at different temperatures are similar in their

shapes, the SOC-dependent parameter θ10(z) at temperature T1, defined as
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V 1
oc(z) multiplied with 1 − θ11 in (4a), is highly correlated with the OCV-

SOC curves {V i
oc(z)}mi=2 at other temperatures {Ti}mi=2. Therefore, we use

an MOGP model to capture the correlations among θ10(z) and {V i
oc(z)}mi=2.

These m outputs are described as zero-mean Gaussian processes, with their
kernel function similar to (6), i.e.,

κ(zil , z
j
k) = ρije

−
(zil−z

j
k
)2

2δ20 . (14)

Define θ10,k = θ10(z
1
k) and V i

oc,k = V i
oc(z

i
k), with k = 1, 2, . . . , ni. From (14), we

can obtain the covariance functions related to {V i
oc,j} and {θ10,j}:

cov
(
V i
oc,l, V

j
oc,k

)
= κ(zil , z

j
k) + 1i,j1l,kσ

2
i , (15a)

cov
(
θ10,l, V

j
oc,k

)
= κ(z1l , z

j
k), i, j = 2, . . . ,m, (15b)

cov
(
θ10,l, θ

1
0,k

)
= κ(z1l , z

1
k), (15c)

where 1i,j is the indicator function that is 1 only if i equals to j, and 0 oth-
erwise, and σ2

i denotes the noise variance of the i-th output. The determina-
tion of hyperparameters in (14) and (15) will be discussed later. According
to probability theory [36], the covariance matrix ρ defined in (8) determines
the correlation coefficient matrix R whose (i, j)-th element

Rij =
ρij√
ρiiρjj

(16)

indicates the correlation between the OCV-SOC curves at temperatures Ti

and Tj.
Besides the SOC-dependent parameter θ10(z), the remaining model co-

efficients θ11, θ
1
2 and θ13 in (3) are described as three independent Gaussian

random variables:
θ1i ∼ N (0, δ2i ), i = 1, 2, 3, (17)

which are all assumed to be independent from θ10(z) and the OCV-SOC curves
{V i

oc(z)}mi=2. Since V 1
t,k in (12) is a linear combination of θ10,k and {θ1i }3i=1, we

can derive the covariance function between {V i
oc,k} and {V 1

t,k} based on (15):

cov
(
V 1
t,l, V

j
oc,k

)
= cov

(
θ10,l, V

j
oc,k

)
= κ(z1l , z

j
k), j = 2, 3, . . . ,m, (18a)

cov
(
V 1
t,l, V

1
t,k

)
=κ(z1l , z

1
k) +

3∑
i=1

δ2i x
1
i,lx

1
i,k + 1l,kσ

2
1, (18b)
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where σ2
1 is the variance of the measurement noise of V 1

t .

Let y1 =
[
V 1
t,1 V 1

t,2 . . . V 1
t,n1

]⊤
denote the measured terminal voltages

at temperature T1, and yi =
[
V i
oc,1 V i

oc,2 . . . V i
oc,ni

]⊤
the OCVs at tem-

perature Ti, i = 2, · · · ,m. With (15a) and (18), we can obtain the joint

distribution of the data vector Y =
[
y⊤1 y⊤2 . . . y⊤m

]⊤
as

p(Y ) = N (0N , KY,Y ) (19)

where N =
∑m

i=1 ni is the dimension of Y , and

KY,Y =


K11 K12 . . . K1m

K21 K22 . . . K2m
...

...
. . .

...
Km1 Km2 . . . Kmm

, (20)

Kij is a ni-by-nj covariance matrix whose (l, k)-th element is

[Kij]l,k =


cov

(
V 1
t,l, V

1
t,k

)
, i = j = 1,

cov
(
V 1
t,l, V

j
oc,k

)
, i = 1, j = 2, . . . ,m,

cov
(
V i
oc,l, V

1
t,k

)
, i = 2, . . . ,m, j = 1,

cov
(
V i
oc,l, V

j
oc,k

)
, i, j = 2, . . . ,m.

(21)

Note that covariances in the above equation are given in (15a) and (18).
With L defined in (8), δ =

[
δ0, δ1, δ2, δ3

]
, and σ =

[
σ1, σ2, . . . , σm

]
, hyper-

parameters L, δ, and σ can be obtained by maximum likelihood estimation.
Maximizing the likelihood in (19) can be transformed into minimizing

g(L, δ, σ) = Y ⊤K−1
Y,Y Y + log detKY,Y , (22)

where the second term on the right-hand side represents the log-determinant
of a matrix.

After determining the hyperparameters, given any input z1∗ , we can obtain
the joint distribution of Y , θ10,∗ = θ10(z

1
∗), and θ1i as

p

 Y
θ10,∗
θ1i

 = N

0N

0
0

 ,

KY,Y KY,θ0 KY,θi

Kθ0,Y Kθ0,θ0 0
Kθi,Y 0 Kθi,θi

 (23)
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where

Kθ0,θ0 = κ(z1∗ , z
1
∗), Kθi,θi = δ2i , (24a)

K⊤
Y,θi

= Kθi,Y =
[
Kθi,y1 0⊤

n2
. . . 0⊤

nm

]
, (24b)

Kθi,y1 = δ2i
[
x1
i,1 x1

i,1 . . . x1
i,n1

]
, (24c)

K⊤
Y,θ0

= Kθ0,Y =
[
Kθ0,y1 Kθ0,y2 . . . Kθ0,ym

]
, (24d)

Kθ0,yj =
[
κ(z1∗ , z

j
1) κ(z1∗ , z

j
2) . . . κ(z1∗ , z

j
nj
)
]
, (24e)

with i = 1, 2, 3, j = 1, 2, . . . ,m. According to the Bayesian formula, we
compute the posterior distributions of θ10,∗ and {θ1i }3i=1, which are all Gaussian
with posterior means and variances as

E[θ10,∗|Y ] = Kθ0,YK
−1
Y,Y Y, (25a)

cov[θ10,∗|Y ] = Kθ0,θ0 −Kθ0,YK
−1
Y,YK

⊤
θ0,Y

, (25b)

E[θ1i |Y ] = Kθi,YK
−1
Y,Y Y, i = 1, 2, 3, (25c)

cov[θ1i |Y ] = Kθi,θi −Kθi,YK
−1
Y,YK

⊤
θi,Y

. (25d)

4.2. Identification of OCV-SOC curve from model coefficients
Next, we derive the OCV-SOC curve using the posterior means and vari-

ances in (25). According to (4a), V 1
oc,∗ = V 1

oc(z
1
∗) nonlinearly depends on

θ10,∗ = θ10(z
1
∗) and θ11, i.e.,

V 1
oc,∗ =

θ10,∗
1− θ11

. (26)

By performing the first-order Taylor expansion on (26), we can obtain the
approximate posterior mean and variance of V 1

oc,∗ as

E[V 1
oc,∗|Y ] ≈

µ1
0,∗

1− µ1
1

, (27a)

cov[V 1
oc,∗|Y ] ≈

cov[θ10,∗|Y ]

(1− µ1
1)

2
+

(µ1
0,∗)

2cov[θ11|Y ]

(1− µ1
1)

4
, (27b)

with µ1
0,∗ = E[θ10,∗|Y ] and µ1

1 = E[θ11|Y ].
As can be seen from (25a), (25c), and (27a), the posterior mean of V 1

oc,∗

has nonlinear dependence on Y =
[
y⊤1 y⊤2 . . . y⊤m

]⊤
. This means that

the OCV-SOC curve at temperature T1 is identified by fusing the measured

terminal voltages y1 =
[
V 1
t,1 V 1

t,2 . . . V 1
t,n1

]⊤
at temperature T1 and the

OCVs {yi =
[
V i
oc,1 V i

oc,2 . . . V i
oc,ni

]⊤}mi=2 at other temperatures {Ti}mi=2.
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4.3. Summary of the proposed MOGP approach

The proposed MOGP based OCV-SOC curve identification algorithm is
summarized below.

Inputs:

• The partial charging/discharging data {I1,V1
t , z

1} at temperature T1.

• The OCV-SOC curve data {zi,Vi
oc}mi=2 over the full SOC range at tem-

peratures {Ti}mi=2.

Step 1. Learn hyperparameters

1a) Describe the model coefficient θ10(z) and the OCV-SOC curves {V i
oc(z)}mi=2

as an MOGP with zero means and covariance function (14); and regard
{θ1i }3i=1 as three mutually independent Gaussian random variables as
described in (17);

1b) Determine the hyperparameters L, δ, and σ by minimizing (22), where
L is defined in (8), δ =

[
δ0, δ1, δ2, δ3

]
consists of δ0 in (14) and {δi}3i=1

in (17), σ =
[
σ1, σ2, . . . , σm

]
includes σi used in (15a).

Step 2. Calculate OCV-SOC relationship at temperature T1

2a) Compute the posterior means and variance functions of θ10(z∗) and
{θ1i }3i=1 according to (25) , respectively.

2b) Compute the approximated posterior mean and variance function of
V 1
oc(z∗) according to (27).

4.4. Comparisons and discussions

In this subsection, our proposed MOGP approach will be compared with
relevant methods in [8, 9, 24].

The two-step scheme in [8, 9] first estimates OCVs from current-voltage
data, and then identifies a polynomial OCV-SOC model. The inevitable
errors of OCV estimates in the first step eventually propagate into the iden-
tified OCV-SOC curve in the second step. In contrast, our proposed approach
does not need to estimate OCVs at the given temperature T1, but directly
identifies the OCV-SOC curve with a nonparametric MOGP model. This is
achieved by fusing the partial charging/discharging current-voltage data at
temperature T1 and the OCV-SOC curve data at other temperatures.

The SOGP approach in [24] relies on direct measurements of OCVs, and
describes the functional dependence of OCV on SOC and temperature as a
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single-output Gaussian process with two inputs. The kernel function of the
adopted SOGP model is

cov
(
V i
oc,l, V

j
oc,k

)
= λe

−
(Ti−Tj)

2

2δ2
T e

−
(zil−z

j
k
)2

2δ2z . (28)

This implies that two OCV-SOC curves at temperatures Ti and Tj have a
higher correlation when the temperature difference |Ti−Tj| becomes smaller.
However, such an implication may not be true in practice. As will be illus-
trated in Section 5.2, the above implication does not hold in the adopted
experimental datasets, hence the SOGP approach results in a poor identi-
fication performance. In contrast, our proposed MOGP approach does not
need OCV measurements obtained via a time-consuming OCV test, but iden-
tifies the OCV-SOC curve from current-voltage data. In particular, unlike
the kernel function (28) of the SOGP approach, the kernel function (14) of
our MOGP approach relies on ρij to describe the correlation of OCV-SOC
curves at temperatures Ti and Tj. The value of ρij is learned from data,
hence it is not necessarily large when the temperature difference |Ti − Tj| is
small.

5. Identification results using experimental datasets

This section presents the identification results of the proposed MOGP
approach using experimental data of A123 LiFePO4 lithium-ion cells released
by Center for Advanced Life Cycle Engineering (CALCE) at University of
Maryland [37, 38]. The datasets are generated by a low-current OCV test
and three dynamic tests including Federal Urban Driving Schedule (FUDS),
US06 Highway Driving Schedule (US06) and Dynamic Stress Test (DST)
at multiple fixed temperatures. The OCV-SOC curves obtained from low-
current OCV tests are treated as the ground truth. We use the ground-truth
OCV-SOC curve data over the full SOC range at T2 = 40◦C and T3 = −10◦C
together with the FUDS current-voltage data over the 80-93% SOC range
at T1 = 0◦C to identify the entire OCV-SOC curve at T1 = 0◦C. The
FUDS current-voltage data at temperature T1 = 0◦C have n1 = 125 samples,
while the number of samples of the ground-truth OCV-SOC curve data at
temperatures T2 = 40◦C and T3 = −10◦C are n2 = 1050 and n3 = 127,
respectively.

Note that it takes 1050 seconds to collect data over the 80-93% SOC range
in the FUDS test for our proposed approach. In comparison, to directly
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measure OCVs over the full SOC range, the low-current OCV test in [19]
takes 15276 seconds, which is significantly longer.

To illustrate the advantages mentioned in Section 4.4, our proposed MOGP
approach will be compared with the two-step scheme in [8, 9] and the SOGP
approach in [24]; then, we will show that the identified OCV-SOC curve using
our proposed MOGP approach results in more accurate SOC estimation.

5.1. Comparison with the two-step scheme

In the above setting, only partial charging/discharging current-voltage
data are provided at temperature T1. As such, the two-step scheme in [8, 9]
cannot be directly applied because it requires data covering the full SOC
range. For a fair comparison with our proposed approach, the two-step
scheme is modified as follows:

1) Estimating OCVs over a partial SOC range at temperature T1: with θ10(z)
polynomially parameterized as

θ10(z
1
k) = cd(z

1
k)

d + · · ·+ c1z
1
k + c0, (29)

the model coefficients cd, · · · , c1, c0 and {θ1i }3i=1 in (12) can be identified
using data {I1,V1

t , z
1} over the given partial SOC range; then, the corre-

sponding OCV estimates can be calculated as

V̂ 1
oc,k =

θ̂10(z
1
k)

1− θ̂11
=

ĉd(z
1
k)

d + · · ·+ ĉ1z
1
k + ĉ0

1− θ̂11

according to (4), with {ĉi}di=0 and {θ̂1i }3i=1 being the estimated model
coefficients.

2) Identifying the OCV-SOC curve at temperature T1: an MOGP model
is first built by fusing the estimated OCV-SOC curve data {z1k, V̂ 1

oc,k}
n1
k=1

over a partial SOC range at temperature T1 and the OCV-SOC curve data
{zi,Vi

oc}mi=2 over the full SOC range at other temperatures {Ti}mi=2, with
zi = {zik}

ni
k=1 and Vi

oc = {V i
oc,k}

ni
k=1 denoting the SOCs and corresponding

OCVs at temperature Ti, respectively; then, the OCV-SOC curve over the
full SOC range at temperature T1 is identified by using the posterior means
derived from the constructed MOGP model. Although the above MOGP
learning and prediction is similar to our proposed approach summarized in
Section 4.3, the parameters {θ1i }3i=1 in (12) no longer need to be considered
here, because the OCV estimates at temperature T1 are used in this step.
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In the following comparison, we implement

1) LS-1-MOGP: the two-step scheme described above, with d = 1 in (29);

2) LS-2-MOGP: the two-step scheme described above, with d = 2 in (29);

3) Our proposed MOGP approach summarized in Section 4.3.

The MOGP learning and prediction is implemented by using the GPML

toolbox [39]. To cope with local minimum during the hyperparameter op-
timization, we use multiple random initial guesses, and then select the set
of learned hyperparameters which gives the best performance. However, the
lower triangular matrix L in (8) includes 6 hyperparameters, which requires
a great number of initial guesses. To address this issue, the initial guess for
L with only one tuning parameter α ∈ [0, 1] is designed, which consists of
the following two steps. In the first step, a simple form of the initial guess
for the label covariance matrix ρ in (8) is adopted:

ρ = αEm + (1− α)Im, (30)

where Em is am-by-mmatrix with all elements equal to 1 and Im is am-by-m
identity. It should be noted that a larger α ∈ [0, 1] indicates stronger correla-
tion among OCV-SOC curves at different temperatures. In the second step,
the initial guess for L is obtained by applying Cholesky factorization in (8)
for ρ in (30). In our proposed MOGP approach, the learned hyperparameters
are

L =

 2.52 0 0
1.66× 10−2 1.51× 10−2 0
2.13× 10−3 2.95× 10−2 8.61× 10−2

,
δ =

[
426.83 14.29 1.33 1.39

]
,

σ =
[
2.30× 10−3 2.30× 10−3 2.30× 10−3

]
.

For LS-1-MOGP, the estimated partial OCV-SOC curve over the 80-93%
SOC range in the first step is V 1

oc(z
1
k) = 0.079z1k + 3.239, and the hyperpa-

rameters learned in the second step are

L =

4.36 0 0
4.41 0.03 0
3.11 −0.90 0.03

, δ0 = 0.063,

σ =
[
1.47× 10−3 1.47× 10−3 1.47× 10−3

]
.
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For LS-2-MOGP, the estimated partial OCV-SOC curve in the first step is
V 1
oc(z

1
k) = −0.039(z1k)

2+0.129z1k +3.226, and the hyperparameters learned in
the second step are

L =

4.44 0 0
4.50 0.02 0
3.29 −0.88 0.02

, δ0 = 0.063,

σ =
[
1.48× 10−3 1.48× 10−3 1.48× 10−3

]
.

Table 1: RMSEs (unit: volt) of identified OCV-SOC curve using the different approaches

proposed MOGP LS-1-MOGP LS-2-MOGP SOGP

0.0156 0.0221 0.0237 0.0496

The identified OCV-SOC curves of three different approaches are shown
in Fig. 3, with their associated RMSEs listed in Table 1. It can be seen
that our proposed MOGP approach reduces the RMSE by at least 29.4%
compared to the two-step methods. This is because the two-step methods
introduce inevitable errors in the OCV estimates in the first step, but do not
explicitly address them in the second step. In contrast, our proposed MOGP
approach avoids estimating OCVs, and identifies the complete OCV-SOC
curve directly from current-voltage data.

5.2. Comparison with the SOGP approach

Our proposed MOGP approach is further compared with the SOGP ap-
proach in [24] to illustrate the advantage explained in the third paragraph of
Section 4.4. To implement the SOGP approach in [24], we assume that the
ground-truth OCV-SOC curve over the 80-93% SOC range at temperature
T1 = 0◦C is available without any estimation errors. After that, the SOGP
approach regards Voc as an SOGP whose inputs consist of SOC and tempera-
ture. The SOGP model is constructed with the kernel function in (28), using
the partial OCV-SOC curve data over the 80-93% SOC range at temperature
T1 = 0◦C and the complete OCV-SOC curve data over the full SOC range
at temperatures T2 = 40◦C and T3 = −10◦C. The hyperparameters learned
for the SOGP model are δz = 0.05, δT = 335.43, λ = 6.49, σ = 1.4× 10−3.

The identified OCV-SOC curves of these two approaches are shown in
Fig. 4, with their RMSEs listed in Table 1. It can be seen that the proposed
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Figure 3: Identified OCV-SOC curves at temperature T1 = 0◦C using the proposed MOGP
approach and the two-step scheme (including LS-1-MOGP and LS-2-MOGP)

MOGP approach reduces the RMSE by 68.5% compared to the SOGP ap-
proach. The reason can be explained by the correlation coefficient matrix R
in (16) learned from data. For the proposed MOGP approach,

R =

 1 0.74 0.02
0.74 1 0.24
0.02 0.24 1


is obtained, and R12 > R13 (Rij represents the (i, j)-th element of R) implies
that the OCV-SOC curves at T1 = 0◦C and T2 = 40◦C have a higher corre-
lation than those at T1 = 0◦C and T3 = −10◦C. This is consistent with the
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ground-truth OCV-SOC curves in Fig. 4, i.e., the ground-truth OCV-SOC
curves at T1 = 0◦C and T2 = 40◦C have a higher similarity than those at
T1 = 0◦C and T3 = −10◦C. However, such an observation is not illustrated
by the correlation coefficient matrix

R =

 1 0.999943 0.999996
0.999943 1 0.999911
0.999996 0.999911 1


learned in the SOGP approach. The essential reason for the above matrix R
is due to the kernel function adopted by the SOGP approach, as explained
in the third paragraph of Section 4.4.

5.3. Application of the proposed approach in SOC estimation

To illustrate the necessity of updating the temperature-dependent OCV-
SOC curve, we identify ECMs at temperature T1 = 0◦C with different as-
sumptions on the OCV-SOC curve:

1) Baseline ECM-ID (ID is short for “identification”): the ECM param-
eters are identified via the popular least squares method [40] using
the ground-truth OCV-SOC curve at T1 = 0◦C; this case uses the
most accurate knowledge about the OCV-SOC curve, thus serves as
the baseline;

2) ECM-ID with non-updated OCV-SOC curve: the ECM parameters are
identified when using the ground-truth OCV-SOC curve at T3 = −10◦C
rather than T1 = 0◦C; this is the case that the OCV-SOC curve is not
updated after the temperature varies from T3 to T1;

3) ECM-ID with updated OCV-SOC curve: the ECM parameters and
the OCV-SOC curve are jointly identified by our proposed MOGP ap-
proach; this is the case that the OCV-SOC curve is updated after the
temperature changes to T1.

The obtained ECM parameters Rs, R1 and C1 of the above three models
are shown in Table 2. These three identified ECMs are used to perform SOC
estimation under the FUDS, US06, and DST conditions, all at temperature
T1 = 0◦C. By following [8], we choose extended Kalman filtering (EKF) as
the SOC estimation algorithm for the above three ECMs. We set the initial
estimated state to be ẑ0 = 0.9 and V̂1,0 = 0. In the EKF algorithm, the
covariance matrices of the initial estimated state, the process noise, and the
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Figure 4: Identified OCV-SOC curve at T1 = 0◦C using the proposed MOGP approach
and SOGP approach in [24]

measurement noise are used as tuning parameters, which are denoted as P̄ ,
Q̄, and R̄, respectively. For the best estimation performance, these tuning
parameters are tuned independently for each ECM model as follows:

1) Baseline ECM-ID:
P̄ = diag

([
1.1× 10−1 1× 10−3

])
,

Q̄ = diag
([
1× 10−7 2.2× 10−3

])
, R̄ = 2.7× 10−2;

2) ECM-ID with non-updated OCV-SOC curve:
P̄ = diag

([
1× 10−1 1× 10−3

])
,

Q̄ = diag
([
1× 10−11 1× 10−5

])
, R̄ = 1× 10−2;

3) ECM-ID with updated OCV-SOC curve:
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P̄ = diag
([
1 1× 10−4

])
,

Q̄ = diag
([
1× 10−10 4× 10−3

])
, R̄ = 5× 10−2.

The resulting RMSEs of SOC estimation are shown in Table 3. It can be
seen that the ECM with updated OCV-SOC curve leads to a slightly higher
RMSE than the baseline ECM, but much lower RMSE than the ECM with
non-updated OCV-SOC curve, which is reduced by at least 14.0% under three
working conditions. This illustrates the necessity of updating the OCV-SOC
curve for accurate SOC estimation as the temperature varies.

Table 2: The identified ECM parameters Rs, R1 and C1 of three ECMs at T1 = 0◦C

Rs(Ω) R1(Ω) C1(F)

Baseline ECM-ID 0.196 0.068 296.236
ECM-ID with non-updated OCV-SOC curve 0.195 0.224 451.982
ECM-ID with updated OCV-SOC curve 0.190 0.024 330.837

Table 3: RMSEs of SOC estimation based three ECM models under three working condi-
tions at T1 = 0◦C

FUDS US06 DST

Baseline ECM-ID 8.8×10−3 4.9×10−3 3.0×10−3

ECM-ID with non-updated OCV-SOC curve 1.2×10−2 1.3×10−2 8.6×10−3

ECM-ID with updated OCV-SOC curve 7.7×10−3 5.4×10−3 7.4×10−3

6. Conclusions

The OCV-SOC curve varies with temperature, hence needs to be updated
at a new temperature. In this paper, we propose a time-efficient OCV-SOC
curve identification method using current-voltage data, without measuring
or estimating OCVs. It fuses data from a piece of charging/discharging
process at a given temperature as well as the OCV-SOC curve data at other
temperatures. The proposed approach adopts an MOGP model to capture
correlations among OCV-SOC curves at different temperatures, and predicts
the OCVs at the given temperature by the posterior means. Using detailed
comparisons with experimental data, we illustrate that the proposed MOGP
approach achieves smaller errors in the OCV-SOC curve identification, and
leads to more accurate SOC estimation.
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