
Towards fast embedded moving horizon state-of-charge

estimation for lithium-ion batteries

Yiming Wana,∗, Songtao Dua, Jiayu Yana, Zhuo Wanga

aSchool of Artificial Intelligence and Automation, Key Laboratory of Image Processing
and Intelligent Control, Engineering Research Center of Autonomous Intelligent

Unmanned Systems, Ministry of Education of China, Huazhong University of Science
and Technology, Wuhan, 430074, Hubei, China

Abstract

For state-of-charge (SOC) estimation with high precision, moving horizon
estimation (MHE) has recently emerged as a competitive alternative to var-
ious Kalman filters or observers due to its significantly improved accuracy
and robustness. However, MHE demands considerably higher computational
complexity, preventing its deployment on a low-cost embedded microcon-
troller. To address this challenge, we propose a fast moving horizon SOC
estimation algorithm to retain the benefits of MHE at a vastly reduced com-
putational cost. In particular, we consider joint SOC and parameter es-
timation for an SOC-dependent equivalent circuit model subject to model
mismatch. The proposed fast joint MHE (jMHE) algorithm performs a fixed
number of Gauss-Newton (GN) iterations to approximate the fully converged
solution. At each iteration, the GN Hessian matrix is factorized by exploiting
its block tridiagonal structure to construct computationally efficient forward-
backward recursions. To further speed up computations, another fast jMHE
algorithm wtih an Event-Triggered Relinearization strategy (jMHE-ETR) is
proposed to avoid refactorizing the GN Hessian matrix at each iteration.
Using experimental datasets under different operating conditions, it is veri-
fied on both laptop and Raspberry Pi microcontroller that compared to the
conventional optimal MHE solved with an off-the-shelf solver, the proposed
fast jMHE and jMHE-ETR algorithms both have a slight loss of performance

∗Corresponding author
Email addresses: ywan@hust.edu.cn (Yiming Wan), s_t_du@hust.edu.cn (Songtao

Du), jiayuyan@hust.edu.cn (Jiayu Yan), wangzhuo@hust.edu.cn (Zhuo Wang)

Preprint submitted to Journal of Energy Storage December 7, 2023

(still significantly better than extended Kalman filtering) while reducing its
computational cost by an order of magnitude.

Keywords: State-of-charge estimation, moving horizon estimation,
real-time computation, lithium-ion battery.

1. Introduction

The use of lithium-ion batteries (LIBs) in energy storage and electric ve-
hicles has grown rapidly in recent years. To ensure safety and reliability, an
advanced battery management system (BMS) plays a significant role, which
typically consists of battery state monitoring, charge/discharge control and
balance control [1, 2]. Among them, the battery state-of-charge (SOC) is
an important parameter used to protect LIBs from overcharge and overdis-
charge [3] as well as to mitigate cell imbalance [4]. However, SOC cannot
be measured directly, and needs to be inferred from available measurements.
Accurate SOC estimation is challenging, because battery measurement in-
formation is often limited including only current, voltage, and temperature,
and the battery dynamics is strongly nonlinear and varies with operating
conditions.

Motivated by the above practical needs and challenges, SOC estimation
methods have been extensively investigated in literature, which are mainly
classified into three categories: electrochemical model based approach, data-
driven approach, and equivalent circuit model (ECM) based approach [3, 5].
Although the electrochemical model provides a detailed description of reac-
tion and transport mechanisms, its real-time application is difficult, because
a large number of unknown model parameters need to be identified from a
limited number of measured variables, and a high-dimensional state space
leads to heavy computation burden [6, 7, 8, 9, 10]. To avoid difficulty in ob-
taining an explicit battery model, the data-driven method directly constructs
an estimator from training data, with measured variables (e.g., current, volt-
age, temperature) as inputs and SOC as output. The learned estimator can
be in the form of deep neural network [11, 12, 13, 14, 15] or Gaussian process
regression [16, 17]. Despite its great potential, the data-driven SOC esti-
mation method still has several limitations in its state-of-the-art: firstly, it
needs a huge volume of high-quality training data including unmeasurable
SOCs; secondly, its estimation performance is guaranteed only in the oper-
ating conditions covered by the training data, and cannot be generalized to

ii

any unseen operating region.
Compared to electrochemical and data-driven models, the ECM strikes a

balance between model complexity and accuracy, thus has been widely used
in real-time SOC estimation. The ECM uses electrical circuit components to
represent the dominating electrochemical processes within a battery cell. To
describe nonlinear dynamics over a wide operating region, the ECM can be
enhanced by allowing its parameters to vary with SOC, temperature, aging,
and current load [18, 19, 20], or by cascade connection with a static non-
linear function to account for the effect of high current densities or/and low
temperature [21]. Any type of ECM inevitably suffers from model mismatch,
as a result of time-varying operation condition, aging, or manufacturing in-
consistency. To cope with such model mismatch, joint or dual SOC and
parameter estimation has been investigated in [22, 23, 24], which imposes
an increased degree of nonlinearity due to interactions between states and
parameters. To enhance robustness against unexpected outliers in voltage
and current measurements, an outlier-resistant SOC estimation method was
proposed in [25, 26] by using outlier diagnosis, extended Kalman filtering,
and Student’s-T filtering. To cope with non-Gaussian noises in SOC esti-
mation, the maximum correntropy criterion with adaptive kernel width was
adopted by [27] in an iterative extended Kalman filtering scheme. To ad-
dress time-varying characteristic of process and measurement noises, varia-
tional Bayesian analysis was introduced into the unscented Kalman filter in
[28] for robust SOC estimation. Although various nonlinear Kalman filters
or observers have been reported in literature, how to avoid divergence and
achieve fast convergence remains a challenge for SOC estimation, due to the
unknown initial state, nonlinear dynamics, and model mismatch.

Compared to the aforementioned nonlinear Kalman filters or observers,
moving horizon estimation (MHE) is a competitive alternative. At each
time instant, MHE generally formulates a nonlinear constrained least squares
problem using measurement data over a receding horizon. The above MHE
problem is then solved to generate state estimates via an iterative numerical
optimization algorithm, which is different from the structure of conventional
filters or observers. Due to these above features, MHE naturally handles
nonlinearity, enhances robustness to a poor initial guess, produces smoother
state estimates with higher accuracy, and achieves a faster rate of convergence
[29]. Motivated by these benefits, MHE has been recently leveraged for
battery state monitoring in a few studies [30, 31, 32, 33, 34, 35, 36, 37]. In [30],
an MHE approach for SOC estimation was proposed for an SOC-dependent

iii

ECM whose open circuit voltage (OCV) and parameters all have polynomial
dependence on SOC. Such an MHE approach was further extended to address
model mismatch [31, 32] via joint SOC and parameter estimation. To address
bias, noise corruption or unavailability of current sensors, joint estimation of
SOC and load current was investigated in [33, 34] in the MHE framework.
In [35], a multiscale MHE method applied to an electrochemical model was
proposed for simultaneous SOC and sate-of-health (SOH) estimation. The
same MHE formulation was also further leveraged in [36] for a multi-timescale
co-estimation hierarchy for SOC, SOH, and state of power. To better cope
with large discrepancy in the initial guess and battery cell inconsistencies,
the MHE combined with auto-regressive long short-term memory network
was proposed in [37].

The improved performance of MHE is generally achieved at the price
of increased computational cost due to repeatedly solving an optimization
problem over a receding time horizon. For SOC estimation, the associated
nonlinear MHE problems in [30, 31, 32, 33, 34, 35, 36, 37] are all computed
by using off-the-shelf optimization solvers. These general-purpose solvers are
not suitable for real-time implementation on a low-cost and resource-limited
embedded microcontroller of a BMS. Within a short sampling interval, a
BMS needs to perform various computation tasks, thus may not have suffi-
cient time or resource to allow solving each MHE problem to full convergence.
To address the above issue of real-time computation, two main approaches
have been reported in literature. The first one leverages a feedforward neural
network (NN) to approximate the mapping from the available data of each
MHE problem to its generated state estimate [38]. By doing so, the compu-
tationally expensive online optimization is replaced by the computationally
cheaper NN. However, the above NN based approach cannot guarantee accu-
rate estimation outside the range of operating conditions covered the training
data, which is the inherent limitation on the generalization capability of any
learning based method. The other approach for real-time implementation of
nonlinear MHE is to develop fast algorithms by limiting the number of iter-
ations [39, 40, 41] and exploiting the specific structure of the MHE problem
[42, 43]. Such fast MHE algorithms have not been fully investigated for SOC
estimation.

In this paper, we work on a fast MHE algorithm for joint SOC and param-
eter estimation using an SOC-dependent ECM subject to model mismatch.
To retain the benefits of MHE at a vastly reduced computational cost, we
propose a fast joint MHE (jMHE) algorithm which extends the generalized

iv

linear Kalman smoothing algorithm in [42] to the SOC-depedent nonlinear
ECM. Specifically, we perform a fixed number of Gauss-Newton (GN) itera-
tions to approximately solve each nonlinear MHE problem within a sampling
interval. In each iteration, we solve the GN equation via computationally ef-
ficient forward-backward recursions by exploiting the block tridiagonal struc-
ture of the GN Hessian matrix. Moreover, we introduce an event-triggered
relinearization strategy to avoid updating and refactorizing the GN Hessian
matrix if the linearization point is subject to a sufficiently small change with
respect to the previous iteration. The proposed fast jMHE algorithm is val-
idated on both laptop and Raspberry Pi microcontroller using experimental
data under different operating conditions, with comparison to the conven-
tional joint extended Kalman filter (EKF) and the optimal jMHE.

The contribution of this paper lies in the following aspects:

i) All existing moving horizon SOC estimation literature such as [30, 31,
32, 33, 34, 35, 36, 37] solve the associated MHE problem by using a
general-purpose optimization solver which is not customized for real-
time computation on a low-cost microcontroller. To address this issue,
we propose the fast jMHE algorithm to retain the benefits of MHE at
a vastly reduced computational cost compared to using an off-the-shelf
general-purpose solver.

ii) Different from the fast MHE literature [42, 43], our fast jMHE algo-
rithm additionally introduces an event-triggered relinearization strat-
egy which further improves computation efficiency at the expense of a
slight loss of performance.

iii) We demonstrate the real-time feasibility of our proposed fast jMHE
algorithm on a low-cost Raspberry Pi microcontroller. This bridges the
gap to implementing moving horizon SOC estimation on an embedded
BMS.

The rest of this paper is as follows. Section 2 describes the SOC-dependent
ECM and the associated joint SOC and parameter estimation problem. The
moving horizon SOC estimation problem formulation and its fast algorithm
are elaborated in Section 3. In Section 4, the proposed fast jMHE algo-
rithm is verified by comparison with the conventional joint EKF and optimal
jMHE. Finally, some concluding remarks are given in Section 5.

v

2. SOC-dependent ECM and problem description

In this section, we first describe the SOC-dependent ECM of the LIB,
and then present the joint SOC and parameter estimation problem.

 !"(#)

$%(Z)

&'(Z)

I +

!"(Z)

#$

+ #"

Figure 1: First-order SOC-dependent ECM for LIBs.

The SOC-dependent first-order ECM shown in Fig. 1 is widely adopted
due to its simplicity and accuracy. The open-circuit voltage Voc represents
the electromotive force of the LIB. The ohmic internal resistance R0 reflects
the ohmic characteristics. The battery polarization resistance R1 and po-
larization capacitor C1 characterize the hysteresis characteristics during the
polarization effect. The SOC Z indicates the ratio of the remaining capacity
to the nominal capacity, ranging from 0 to 1. In this paper, it is assumed
that the SOC estimation is conducted under a constant temperature, hence
the above circuit parameters only depend on SOC.

According to the electric circuit analysis, the first-order ECM in Fig. 1
is expressed as

dZ

dt
= − I

Cn

, (1a)

dV1

dt
=

I

C1(Z)
− V1

R1(Z)C1(Z)
, (1b)

Vb = Voc(Z)−R0(Z)I − V1, (1c)

where Cn is the nominal capacity of the LIB, I represents the load current
whose value is positive at discharge, V1 denotes the voltage across the parallel
RC circuit, and Vb is the terminal voltage. As in [31], we use polynomial

vi

functions to describe the SOC-dependent parameters Voc(Z), R0(Z), R1(Z),
and C1(Z) as

Voc(Z)=
n∑

j=0

αjZ
j, R0(Z)=β10 +

m1∑
j=1

β1,jZ
j, (2a)

R1(Z)=β20 +

m2∑
j=1

β2,jZ
j, C1(Z)=β30 +

m3∑
j=1

β3,jZ
j, (2b)

where αj, β1,j, β2,j and β3,j are polynomial coefficients, n and mi are the
polynomial orders. Note that the nominal capacity Cn and the polynomial
dependencies in (2) can be obtained offline via the capacity test, the OCV
test and parameter identification methods [44, 18]. Since the battery aging is
out of scope of this paper, the battery capacity Cn is assumed to be a known
constant.

For the SOC estimation using sampled measurements of the current I and
the terminal voltage Vb, let ∆t denote the small sampling interval, Zk, Ik, V1,k,
and Vb,k represent the samples of Z, I, V1, and Vb at time k∆t, respectively.
Define R0,k = R0(Zk), R1,k = R1(Zk), C1,k = C1(Zk), and τ1,k = R1,kC1,k.
With these notations, we transform the continuous-time ECM (1) into the
following discrete-time model

Zk+1 = Zk−
Ik∆t

Cn

+ w1,k, (3a)

V1,k+1 = V1,kexp

(
−∆t

τ1,k

)
+ IkR1,k

[
1−exp

(
−∆t

τ1,k

)]
+ w2,k, (3b)

Vb,k = Voc(Zk)− V1,k − IkR0,k + vk, (3c)

where w1,k and w2,k are process noises due to discretization errors, and vk
denotes the measurement noise.

To account for the model mismatch due to time-varying operating con-
ditions, it is necessary to update the ECM parameters in (3) to improve the
SOC estimation performance. As reported in [31], only the zero-order poly-
nomial coefficients β10, β20, and β30 defined in (2) are updated online as β10,k,
β20,k, and β30,k, respectively, to compensate for the model mismatch, which
avoids the high computational cost required for updating all model parame-
ters. This leads to a joint SOC and parameter estimation problem. To this

vii

end, the following augmented state-space model is introduced according to
(3):

xk+1 = f(xk, uk) + wk, (4a)

yk = h(xk, uk) + vk, (4b)

with the augmented state xk, the system input uk, the system output yk, the
nonlinear functions F (xk, uk) and h(xk, uk) defined as

xk =
[
Zk V1,k β10,k β20,k β30,k

]⊤
, (5a)

uk = Ik, yk = Vb,k, (5b)

f(xk, uk) =

1 0 0 0 0

0 exp
(
− ∆t

τ1,k

)
0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

xk

+

−∆t

Cn

R1,k

[
1−exp

(
− ∆t

τ1,k

)]
0
0
0

uk, (5c)

h(xk, uk) = Voc(Zk)− V1,k − IkR0,k. (5d)

The noise term wk in (4) consists of w1,k and w2,k in (3) as well as the
random-walk noises for the time-varying parameters β10,k, β20,k, and β30,k.

Using the above augmented state-space model (4), the joint estimation
problem aims at estimating SOC at each time k while updating parameter
estimates of β10,k, β20,k, and β30,k.

3. Fast moving horizon joint SOC and parameter estimation

In this section, we formulate an MHE problem for joint SOC and param-
eter estimation, and propose its fast algorithm. Over each time horizon, the
proposed algorithm performs a fixed number of structure-exploiting GN iter-
ations to approximate the fully converged solution of the optimal MHE. This
significantly reduces the computation time per sample compared to the opti-
mal MHE algorithm, which is desirable for real-time implementation within
a short sampling interval.

viii

3.1. MHE formulation for joint SOC and parameter estimation

The MHE approach copes with joint SOC and parameter estimation by
exploiting the input and output data over the sliding time window of finite
lengthN . At time k, the jMHE problem is formulated as the following nonlin-
ear least-squares optimization problem over the time window [l, k] according
to the augmented state-space model (4), i.e.,

min
{xi}ki=l

1

2

∥∥xl − x̂l|k−1

∥∥2

P−1
l

+
1

2

k−1∑
i=l

∥xi+1 − f(xi, ui)∥2Q−1

+
1

2

k∑
i=l

∥yi − h(xi, ui)∥2R−1 , (6)

where ∥s∥2M = s⊤Ms represents a weighted vector norm with M being a
positive definite matrix. Let x̂i|j denote the estimate of xi computed at time
j, then x̂l|k−1 in the first term of (6) is the a priori state estimate of xl at time
k − 1. The weighting matrices P−1

l , Q−1, and R−1 in (6) will be discussed
later. Note that there are two scenarios for the value of l in (6):

i) If k < N , set l = 0. This means that the time window [0, k] of a
growing length, i.e., all the information up to the current time k, is
considered.

ii) If k ≥ N , set l = k −N + 1. This corresponds to using a sliding time
window [k −N + 1, k] of length N .

In the statistical setting, the solution of the jMHE problem (6) can be
interpreted as maximum likelihood estimation if the initial state, the process
noise and the measurement noise are all zero-mean Gaussian distributed, with
the positive definite matrices Q and R in (6) being the noise covariances [29].
Moreover, the first term in the cost function of (6), called the arrival cost,
is derived from the negative logarithm of the conditional density of x̂l|k−1

derived at time k − 1, which captures the information about xl before the
current time k. The matrix P0 is a tuning parameter used for k < N . In
the case of k ≥ N , Pl needs to be updated as k increases, and it can be
iteratively computed via the classic extended Kalman filter, i.e.,

Pl = Q+ Al−1Pl−1A
⊤
l−1

− Al−1Pl−1C
⊤
l−1

(
R + Cl−1Pl−1C

⊤
l−1

)−1
Cl−1Pl−1A

⊤
l−1,

(7)

ix

with Al−1 = ∇xF (x̂l−1|k−1, ul−1) and Cl−1 = ∇xh(x̂l−1|k−1, ul−1). In the
deterministic setting, the matrices Q and R are tuning parameters, and the
arrival cost term in (6) can be regarded as a quadratic approximation to
the cost before the current time horizon. Interested readers are referred to
[29, 40] for more details about MHE and the derivation of its arrival cost.

Most literature such as [30, 31, 32, 33, 34, 35, 36, 37] that applied various
MHE formulations to SOC estimation fully solves each single MHE problem
per sample to convergence by using off-the-shelf optimization solvers, which
involves a considerably high computational burden. This is often not allowed
by a BMS that needs to simultaneously perform different computation tasks
on a low-cost microcontroller within a short sampling interval. As such, we
proceed to develop a fast jMHE algorithm in the following subsection to
significantly reduce the computational cost while slightly compromising its
estimation accuracy compared to the fully converged MHE solution.

3.2. Fast joint MHE algorithm

The proposed fast algorithm performs a fixed number of structure-exploiting
GN iterations to solve the jMHE problem (6) at each time instant k. As de-
picted in Fig. 2, the basic idea consists of two aspects: 1) a shifted warm
start obtained from the previous solution; 2) GN iterations that leverage the
block tridiagonal structure of the GN Hessian matrix to construct efficient
forward-backward recursions.

At each time k, the jMHE problem (6) over the time interval [l, k] is

solved iteratively. For k ≥ N ,We determine the initial guess {x̂(0)
i|k}ki=l by a

warm start strategy that shifts the jMHE solution {x̂i|k−1}k−1
i=l at the previous

time k − 1, i.e.,

x̂
(0)
i|k = x̂i|k−1, i ∈ [l, k − 1],

x̂
(0)
k|k = f(x̂k−1|k−1, uk−1),

(8)

with f(·) defined in (4a).

At each GN iteration, we compute the solution {x̂(j)
i|k}ki=l from the previous

solution {x̂(j−1)
i|k }ki=l. Firstly, we equivalently rewrite (6) as

min
Xk

1

2
∥F (Xk, Ik)∥2W−1 , (9)

where Xk = {xi}ki=l consists of the optimization variables,

Ik = {x̂l|k−1, ul, yl, · · · , uk−1, yk−1, yk}

x

Data in MHE problem

Structure-exploiting GN iterations

Shifted initialization

Structure-exploiting GN iterations

One-step

prediction

T
im

e

T
im

e

(a) k < N

Data in MHE problem

Structure-exploiting GN iterations

Shifted

initialization

Structure-exploiting GN iterations

One-step

prediction

T
im

e

T
im

e

(b) k ≥ N

Figure 2: Schematic diagram of the MHE algorithm.

represents the data for the MHE problem (6) at time k, W is a block diagonal
matrix whose diagonal blocks are Pl, Rl, Ql, Rl+1, · · · , Qk−1, Rk, i.e.,

W = diag{Pl, Rl, Ql, Rl+1, · · · , Qk−1, Rk}, (10)

xi

and F (Xk, Ik) is defined as

F (Xk, Ik) =

xl − x̂l|k−1

yl − h(xl, ul)
xl+1 − f(xl, ul)

yl+1 − h(xl+1, ul+1)
...

xk − f(xk−1, uk−1)
yk − h(xk, uk)

. (11)

Then, we derive the following least-squares (LS) subproblem from (9) by
replacing F (Xk, Ik) with its first-order Taylor expansion with respect to

X̂
(j−1)
k = {x̂(j−1)

i|k }ki=l:

min
∆Xk

1

2

∥∥∥F (X̂
(j−1)
k , Ik) + J(X̂

(j−1)
k , Ik)∆Xk

∥∥∥2

W−1
, (12)

where F (X̂
(j−1)
k , Ik), ∆Xk, and the Jacobian J(X̂

(j−1)
k , Ik) = ∂

∂Xk
F (X̂

(j−1)
k , Ik)

are expressed as

F (X̂
(j−1)
k , Ik) =

[
r⊤x,l r⊤y,l r⊤f,l r⊤y,l+1 · · · r⊤f,k−1 r⊤y,k

]⊤
, (13a)

∆Xk =
[
∆x⊤

l ∆x⊤
l+1 · · · ∆x⊤

k

]⊤
, (13b)

J(X̂
(j−1)
k , Ik) =

Inx 0
−Cl

−Al Inx

−Cl+1

−Al+1
. . . Inx

. . . −Ck−1

−Ak−1 Inx

0 −Ck

, (13c)

with

∆xi = xi − x̂
(j−1)
i|k , rx,l = x̂

(j−1)
l|k − x̂l|k−1, (14a)

rf,i = x̂
(j−1)
i+1|k − f

(
x̂
(j−1)
i|k , ui

)
, ry,i = yi − h

(
x̂
(j−1)
i|k , ui

)
, (14b)

Ai = ∇xf
(
x̂
(j−1)
i|k , ui

)
, Ci = ∇xh

(
x̂
(j−1)
i|k , ui

)
. (14c)

xii

Note that the superscript (j−1) is omitted for ∆xi, rx,l, rf,i, ry,i, Ai, and Ci in
(14) for the sake of notation simplicity. The first-order optimality condition
of the above LS subproblem (12) is then derived as the GN equation

J⊤(X̂
(j−1)
k , Ik)W−1J(X̂

(j−1)
k , Ik)∆Xk = −J⊤(X̂

(j−1)
k , Ik)W−1F (X̂

(j−1)
k , Ik).

(15)
Using (10) and (13c), the above GN equation (15) can be explicitly expressed
as

Φl −Γ⊤
l 0

−Γl Φl+1 −Γ⊤
l+1

.

0 −Γk−1 Φk

︸ ︷︷ ︸

M

∆xl

∆xl+1
...

∆xk

︸ ︷︷ ︸

∆Xk

=

rd,l
rd,l+1
...

rd,k

︸ ︷︷ ︸

r

, (16)

with

Φl = P−1
l + A⊤

l Q
−1Al + C⊤

l R
−1Cl, (17a)

Φi = Q−1 + A⊤
i Q

−1Ai + C⊤
i R

−1Ci, i ∈ [l + 1, k − 1], (17b)

Φk = Q−1 + C⊤
k R

−1Ck, (17c)

Γi = Q−1Ai, i ∈ [l, k − 1], (17d)

rd,l = −P−1
l rx,l + A⊤

l Q
−1rf,l + C⊤

l R
−1ry,l, (17e)

rd,i = −Q−1rf,i−1 + A⊤
i Q

−1rf,i + C⊤
i R

−1ry,i, i ∈ [l + 1, k − 1], (17f)

rd,k = −Q−1rf,k−1 + C⊤
k R

−1ry,k. (17g)

To efficiently solving the GN equation (16), the block tridiagonal struc-
ture of the GN Hessian matrix M is exploited. First, we perform an LU
decomposition M = LU , with

Σl = Φl, Σi+1 = Φi+1 − ΓiΣ
−1
i Γ⊤

i , i ∈ [l, k − 1], (18a)

L =

Σl 0
−Γl Σl+1

.

0 −Γk−1 Σk

 , (18b)

U =

Inx −Σ−1

l Γ⊤l 0
Inx −Σ−1

l+1Γ
⊤
l+1

. . .

0 Inx

 . (18c)

xiii

Then, we solve the GN equation (16) via forward-backward recursions as
detailed in Algorithm 2, i.e., the forward recursion computes ∆X ′

k from
L∆X ′

k = r and the backward recursion computes ∆Xk from U∆Xk = ∆X ′
k.

With the obtained solution ∆Xk, the estimate is updated as X
(j)
k = X

(j−1)
k +

∆Xk.
To satisfy the real-time requirement, we perform a fixed number of GN

iterations without requiring a fully converged solution to the original non-
linear MHE problem (9). The details are summarized in Algorithms 1 and
2.

Algorithm 1 Fast jMHE algorithm at each time k

Input: the input and output sequence {ui, yi}ki=l at time k, the state esti-
mates {x̂i|k−1}k−1

i=l at time k − 1, and the fixed number of GN iterations
m. Note that l = 0 if k < N , and l = k −N + 1 if k > N .

1: Use P0 in the arrival cost if k < N ; update Pl according to (7) if k ≥ N ;

2: Determine the initial guess
{
x̂
(0)
i|k

}k

i=l
according to (8);

3: for j = 1→ m do ▷Structure-exploiting GN iterations
4: Update rx,l, {rf,i, Ai}k−1

i=l and {ry,i, Ci}ki=l in (14) using {x̂(j−1)
i|k , ui}ki=l;

5: Update {Φi}ki=l, {Γi}k−1
i=l , and {rd,i}ki=l in (17);

6: Compute the solution {∆xi}ki=l to (16) using Algorithm 2;

7: Update x̂
(j)
i|k ← x̂

(j−1)
i|k +∆xi for i ∈ [l, k];

8: end for
Output: x̂i|k = x̂

(m)
i|k for i ∈ [l, k].

3.3. Event-triggered relinearization

To further reduce the computational cost, we introduce an event-triggered
relinearization (ETR) strategy, to construct the fast jMHE-ETR algorithm
described in Algorithms 3 and 4. For the conventional GN method, relin-
earization is conducted at each iteration to derive the LS subproblem (12).
However, we propose the ETR strategy to perform relinearization only if
necessary, such that the computational cost is further reduced with a slight
loss of estimation performance.

The proposed ETR strategy is depicted in Fig. 3, and explained as fol-
lows. To this end, we introduce the linear system

J⊤
linW

−1Jlin∆Xk = −J⊤
linW

−1F (X̂
(j−1)
k , Ik). (19)

xiv

Algorithm 2 Forward-backward recursion to solve (16) in the fast jMHE
algorithm

Input: {Φi, rd,i}ki=l, {Γi}k−1
i=l

1: Initialization: Σl ← Φl, ∆x′
l ← Σ−1

l rd,l
2: for i = l + 1→ k do ▷Forward recursion
3: Σi ← Φi − Γi−1Σ

−1
i−1Γ

⊤
i−1

4: ∆x′
i ← Σ−1

i (rd,i + Γi−1∆x′
i−1)

5: end for
6: ∆xk ← ∆x′

k

7: for i = k − 1→ l do ▷Backward recursion
8: ∆xi ← ∆x′

i + Σ−1
i Γ⊤

i ∆xi+1

9: end for
Output: {∆xi}ki=l

• Compute () in (19)

• Set flag using , , ()

(Line 3-10 of Algorithm 3)

Relinearization

Solve

Reuse LU factorization

of

Update and refactorize

(Line 14 of Algorithm 3)

Yes

flag = 0
No

(Line 12-13 of Algorithm 3)

(Line 16-18 of Algorithm 3)

LU Factorization of GN Hessian matrix

Update
()
=

()
+

Figure 3: A flow chart of GN iterations with the ETR strategy.

xv

With (19), the proposed fast jMHE algorithm in the previous subsection can

be regarded as first performing relinearization to update Jlin = J(X̂
(j−1)
k , Ik),

and then solving (19) at each GN iteration. In contrast, the fast jMHE-ETR
algorithm does not implement relinearization if Jlin used in the previous iter-
ation is still a good approximation to the new Jacobian matrix J(X̂

(j−1)
k , Ik).

To achieve this goal without explicitly computing J(X̂
(j−1)
k , Ik), we evaluate

the difference between the solution
{
x̂
(j−1)
i|k , ui

}k

i=l
from the (j−1)th iteration

and the linearization point
{
xlin
i , ulin

i

}N−1

i=0
used to obtain Jlin, i.e.,

δ(j) = max
i∈[l,k]

∥∥∥∥∥
[
x̂
(j−1)
i|k
ui

]
−
[
xlin
i−l

ulin
i−l

]∥∥∥∥∥
2∥∥∥∥[xlin

i−l

ulin
i−l

]∥∥∥∥
2

. (20)

With a predefined small positive scalar ε, δ(j) ≤ ε implies that the new
Jacobian J(X̂

(j−1)
k , Ik) can be well approximated by the previous Jacobian

Jlin obtained at {xlin
i , ulin

i }N−1
i=0 . In this case, we do not need relinearization

to update the Jacobian Jlin as J(X̂
(j−1)
k , Ik), and still get a valid descent

direction ∆Xk by solving (19).
With the above ETR strategy (see line 3-10 in Algorithm 3), we save

substantial computational cost in the following two aspects:

i) The GN Hessian matrix J⊤
linW

−1Jlin in (19) remains unchanged, and
its LU factorization in (18) does not need to be recalculated. As such,
the linearized system matrices {Ai}k−1

i=l and {Ci}ki=l in (14c) as well as
Φi,Γi in (17a)-(17d) and Σi in (18) are not updated, and their values
obtained in the previous iteration are directly used.

ii) When solving the GN equation (16), the matrices Σi, Σ
−1
i , Σ−1

i Γ⊤
i , and

Σ−1
i Γi−1 do not need to be updated as in Algorithm 2. Instead, their

previous values are saved and updated in line 14 of Algorithm 3, and
then directly used in Algorithm 4 if relinearization is not performed.

3.4. Comparisons and discussions

Similar MHE formulations were adopted for SOC estimation or joint SOC
and parameter estimation in [30, 31, 32, 33, 34, 35, 36, 37]. However, in these

xvi

Algorithm 3 Fast jMHE-ETR algorithm at each time k

Input: the input and output sequence {ui, yi}ki=l at time k, the state esti-
mates {x̂i|k−1}k−1

i=l at time k − 1, and the fixed number of GN iterations
m. The arrival-cost weighting matrix Pl is fixed to P0. Note that l = 0
if k < N , and l = k −N + 1 if k ≥ N . The scalar parameter ε is set to
a small value for ETR.

1: Determine the initial guess
{
x̂
(0)
i|k

}k

i=l
according to (8);

2: for j = 1→ m do ▷Structure-exploiting GN iterations
3: Compute δ(j) in (20) if (k < N, j > 1) or k ≥ N ;
4: if k < N and j = 1 then
5: flag← 1;
6: else if δ(j) > ε then
7: flag← 1;
8: else
9: flag← 0.

10: end if
11: if flag = 1 then ▷Event-triggered relinearization

12: Update x̂lin
i−l ← x̂

(j−1)
i|k , ulin

i−l ← ui for i ∈ [l, k];

13: Update {Ai}k−1
i=l and {Ci}ki=l in (14) using {x̂(j−1)

i|k , ui}ki=l;

14: Update {Φi}ki=l, {Γi}k−1
i=l in (17), and {Σi}ki=l in (18a), then com-

pute S0, · · · , SN−1, W0, · · · ,WN−1, E1, · · · , EN−1 as follows{
Si−l = Σ−1

i , Wi−l = Σ−1
i Γ⊤

i i = l, · · · , k
Ei−l = Σ−1

i Γi−1, i = l + 1, · · · , k

15: end if
16: Update rx,l, {rf,i}k−1

i=l and {ry,i}ki=l in (14) using {x̂(j−1)
i|k , ui}ki=l;

17: Update {rd,i}ki=l in (17) ;
18: Perform Algorithm 4 to compute {∆xi}ki=l;

19: Update x̂
(j)
i|k ← x̂

(j−1)
i|k +∆xi for i ∈ [l, k];

20: end for
Output: x̂i|k = x̂

(m)
i|k for i ∈ [l, k].

xvii

Algorithm 4 Forward-backward recursion to solve (16) in the fast jMHE-
ETR algorithm

Input: {Si−l,Wi−l, rd,i}ki=l, {Ei−l}ki=l+1

1: ∆x′
l ← S0rd,l

2: for i = l + 1→ k do ▷Forward recursion
3: ∆x′

i ← Si−lrd,i + Ei−l∆x′
i−1

4: end for
5: ∆xk ← ∆x′

k

6: for i = k − 1→ l do ▷Backward recursion
7: ∆xi ← ∆x′

i +Wi−l∆xi+1

8: end for
Output: {∆xi}ki=l

latest literature, the MHE or jMHE problems for SOC estimation are all
fully solved to convergence by using a general-purpose optimization solver,
without explicitly considering the limited time allowed for real-time imple-
mentation. For each iteration of a general-purpose solver, the computation
complexity of solving the MHE problem is dominated by the cost of solving
the GN equation, and is O(N3(nx+nw)

3) if both the state and process noise
sequences are estimated, where N is the horizon length, nx and nw represent
the dimensions of xi and wi, respectively [45]. If only the state sequence
is computed without estimating the process noises, the above computation
complexity becomes O(N3n3

x). In both of the above two cases, the compu-
tation complexity is cubic with respect to the horizon length N , which is
undesirable in terms of computation efficiency.

Unlike the general-purpose solvers, the proposed fast jMHE and jMHE-
ETR algorithms exploit the block tridiagonal structure of the GN Hessian
matrix. By doing so, the computation complexity of solving the GN equation
in Algorithm 2 is reduced to O(Nn3

x) that is linear with respect to the horizon
length N .

In addition, our proposed fast jMHE and jMHE-ETR algorithms consume
less memory than using the general-purpose solver. The proposed fast algo-
rithms do not need to store all entries of the Jacobian matrix in (13c), the
GN Hessian matrix in (16), and the factored LU matrices L and U in (18),
but just require the sparse non-zero blocks in these matrices to be stored.
For example, the Jacobian matrix in (13c) is stored as {Ai}k−1

i=l and {Ci}ki=l,
which uses (N − 1)n2

x + Nnxny memory entries, with N = k − l + 1. In

xviii

contrast, the general-purpose solver treats the above matrices as dense, thus
requires all of their entries to be stored, e.g., N2nx(nx + ny) memory entries
are consumed for the Jacobian matrix in (13c) by the general-purpose solver.

Both our previous work in [46] and our proposed fast algorithms in this
paper rely on the structure-exploiting GN iterations. Compared to [46], the
proposed fast algorithms in this paper has been improved in the following
aspects:

i) The proposed fast jMHE algorithm in this paper further reduces the
computation complexity per GN iteration from O(N(nx + nw)

3) to
O(Nn3

x) while retaining exactly the same estimation accuracy. Specif-
ically, the work in [46] formulated the MHE problem as

min
{xi}ki=l,{wi}k−1

i=l

1

2

∥∥xl − x̂l|k−1

∥∥2

P−1
l

+
1

2

k−1∑
i=l

∥wi∥2Q−1

+
1

2

k∑
i=l

∥yi − h(xi, ui)∥2R−1

s.t. xi+1 = f(xi, ui) + wi, i ∈ [l, k − 1],

(21)

to simultaneously estimates the state sequence {xi}ki=l and process noise
sequence {wi}k−1

i=l , hence its computation complexity per iteration is
O(N(nx + nw)

3). In comparison, the newly formulated problem (6) in
this paper is equivalent to (21), because the former can be derived from
the latter by replacing the process noise wi with xi+1−F (xi, ui) in the
cost function. As such, with the same number of GN iterations, solving
(6) produces exactly the same SOC estimates as solving (21). But the
computational cost is reduced to O(Nn3

x) due to eliminating the need
to estimate the process noises.

ii) The proposed fast jMHE algorithm in this paper implements a fixed
number of GN iterations as long as it is allowed in real-time. An
increased number of GN iterations generally results in improved esti-
mation accuracy at the price of higher computational cost, as will be
illustrated in Section 4. However, the work in [46] performed only one
Gauss-Newton iteration over each time horizon.

iii) We introduce the ETR strategy in Section 3.3 to further reduce the
computational burden at the cost of a slight performance loss, which
has been reported in neither [46] nor other fast MHE literature.

xix

iv) As will be seen in Section 4.5, we evaluate the performance and compu-
tational cost of the proposed fast MHE algorithm on a low-cost Rasp-
berry Pi microcontroller, which has not been done in [46] or other fast
MHE literature.

4. Estimation results using experimental data

To verify the effectiveness of our proposed fast jMHE and jMHE-ETR al-
gorithms, we adopt the experimental datasets of 18650 LiNiMnCoO2/Graphite
lithium-ion cells released by Center for Advanced Life Cycle Engineering
(CALCE) at University of Maryland for case study in this section [47].
Firstly, we describe the datasets, and give the SOC-dependent ECM iden-
tification result in Section 4.1; in Section 4.2, we introduce the estimation
algorithms to be implemented, and compare their estimation performance
and computational costs given a set of tuning parameters; in Sections 4.3
and 4.4, we explain the effect of tuning the iteration number and the ETR
threshold, respectively; and finally, in Section 4.5 we deploy the aforemen-
tioned algorithms on a Raspberry Pi microcontroller to further illustrate the
capability of our proposed fast jMHE and jMHE-ETR algorithms to satisfy
real-time computation requirement.

The source code of this paper is available at https://data.mendeley.
com/datasets/3zv48n4jn5/3 [48].

4.1. Dataset description and ECM identification

As described in [47], the test cells were placed inside a thermal chamber
whose temperature is controlled at 25°C, and the data were collected by an
Arbin BT2000 battery test system. An incremental-current OCV test was
performed to construct the OCV-SOC curve, and datasets were generated
under four operating conditions including the Federal Urban Driving Sched-
ule (FUDS), the US06 Highway Driving Schedule, the Dynamic Stress Test
(DST) and the Beijing Dynamic Stress Test (BJDST), which are available
at https://calce.umd.edu/battery-data. Under each one of the above
operating conditions, the sampling rate is 0.1Hz during the charging process;
in the discharging process, the sampling rate is 0.1Hz when the SOC is above
0.8, and it increases to 1Hz when the SOC is below 0.8. The current profiles
are shown in Fig. 4.

Before performing online SOC estimation, the SOC-dependent ECM de-
scribed in Section 2 is identified using the OCV test data and the FUDS

xx

https://data.mendeley.com/datasets/3zv48n4jn5/3
https://data.mendeley.com/datasets/3zv48n4jn5/3
https://calce.umd.edu/battery-data

0 200 400 600 800 1000 1200 1400

-2

0

2

4

(a) FUDS condition

0 100 200 300 400 500 600
-2

0

2

4

(b) US06 condition

0 200 400 600 800 1000
-1

0

1

2

(c) BJDST condition

0 50 100 150 200 250 300 350

-2

0

2

4

(d) DST condition

Figure 4: One cycle of current profiles under four operating conditions.

xxi

dataset. Considering the two sampling rates (0.1Hz and 1Hz, as mentioned
in the previous paragraph) when collecting the datasets, the data with the
sampling rate 1Hz, which cover the SOC range 0 ∼ 0.8 in the discharging
process, are selected for the ECM identification. The offline model identifica-
tion consists of two steps: the OCV-SOC relation in the form of a polynomial
function is first constructed by using data from the OCV test, then the SOC-
dependent ECM parameters R0(Z), R1(Z), and C1(Z) are identified from the
FUDS dataset using the multi-ARX algorithm described in our previous work
[18]. The identified result is listed in Table 1. The accuracy of the identified
ECM is validated by the root mean square error of the predicted terminal
voltage, i.e., 0.0017V, 0.0022V, 0.0017V, and 0.0023V using the FUDS, US06,
BJDST, and DST datasets, respectively.

Table 1: Identified SOC-dependent ECM parameters.

ECM parameters SOC-dependent polynomials

Voc(Z) 6.22Z5 − 19.91Z4 + 23.98Z3 − 12.66Z2

+3.29Z + 3.24

R0(Z) −0.638Z5 + 1.63Z4 − 1.60Z3 + 0.774Z2

−0.187Z + 0.089

R1(Z) 7.74Z5 − 16.88Z4 + 13.00Z3 − 4.17Z2 + 0.507Z

+0.0027

C1(Z) 124589.17Z5 − 203175.87Z4 + 92495.58Z3

−644.92Z2 − 6863.34Z + 1877.26

4.2. Comparisons of estimation performance and computational costs

Considering the inexactness of the identified model in Table 1, we adopt
the joint SOC and parameter estimation scheme using the augmented state-
space model (4). The following joint SOC and parameter estimation algo-
rithms are implemented for comparison:

� Joint EKF (jEKF);

xxii

� Optimal jMHE: the jMHE problem (6) over each time horizon is fully
solved to obtain a converged solution, using the MATLAB lsqnonlin rou-
tine whose termination tolerance parameters OptimalityTolerance

and StepTolerance are both set to 10−16;

� Fast jMHE, i.e., our proposed method described in Algorithms 1 and
2;

� Fast jMHE with ETR (jMHE-ETR), i.e., our proposed method de-
scribed in Algorithms 3 and 4.

Results of the above SOC estimation algorithms under the US06, BJDST
and DST conditions are compared in the following three aspects:

� Convergence speed: the amount of time it takes for the estimation error
to converge from its initial nonzero value;

� Root mean square error (RMSE) of SOC:

RMSE of SOC =

√√√√∑Nd

i=1

∣∣∣Ẑi − Zi

∣∣∣2
Nd

(22)

where Ẑi represents the SOC estimate at time instant i, and Nd is the
number of samples used in performance evaluation;

� Computational cost: the average and worst-case computation times
spent in computing estimates over each time horizon. Our computa-
tional results in Sections 4.2 and 4.4 are obtained by running MATLAB

R2021b on a laptop computer (4-core, Intel Core i7-8550U CPU @
1.80GHz, 8GB memory) , and those in Section 4.5 are obtained by
running OCTAVE on a Raspberry Pi 4 Model B microcontroller.

To evaluate estimation performance of aforementioned algorithms, we add
to the terminal voltage measurement a zero-mean white noise with standard
deviation 0.001V. All the considered estimation algorithms have the tuning
parameters P0, Q, and R whose values are determined via extensive grid
search in this paper. The tuning parameters for jEKF are set as

P0 = diag(10−2, 10−3, 10−6, 10−6, 10−6),

Q = diag(10−6, 10−2, 10−6, 10−6, 10−6), R = 10−6,

xxiii

while the optimal jMHE, fast jMHE, and fast jMHE-ETR set their tuning
parameters to the same values, i.e.,

P0 = diag(10−2, 10−4, 10−6, 10−6, 10−6),

Q = diag(10−9, 10−1, 10−6, 10−6, 10−6), R = 10−6,

all with the horizon length N = 3. The fast jMHE and jMHE-ETR algo-
rithms are implemented with different number of GN iterations m = 2, 3, 4
over each time horizon, and the triggering threshold ε for the fast jMHE-ETR
is set to ε = 0.01.

With different initial state guesses, results of the above algorithms under
the US06, BJDST, and DST conditions are depicted in Fig. 5. It can be easily
seen that the jEKF gives the slowest convergence speed, while the optimal
jMHE, fast jMHE, and fast jMHE-ETR algorithms achieve fast convergence.
To compare the estimation errors, the RMSEs of SOC given by the above
algorithms with the initial guess Ẑ0 = 0.4 under different conditions are listed
in Table 2. The jEKF gives the largest RMSE of SOC, while the optimal
jMHE achieves the best estimation performance overall. The RMSEs of
our proposed fast jMHE and jMHE-ETR algorithms generally decrease as
the number of iterations m increases. By setting the triggering threshold
ε = 0.01, the fast jMHE-ETR achieves almost the same RMSEs as the fast
jMHE.

The computational costs of the above algorithms are evaluated under
the BJDST condition, as listed in Table 3. To obtained a fully converged
solution, the optimal jMHE takes 5.80ms and 4 iterations in average per
sample, and is the most computationally expensive due to using the general-
purpose solver lsqnonlin in MATLAB. In contrast, the proposed fast jMHE
significantly reduces the averaged computation time to 0.42ms per sample
by performing the structure-exploiting GN iterations, while the fast jMHE-
ETR further speeds up to take only 0.31ms per sample due to additionally
adopting the ETR strategy. As expected, the joint EKF is the fastest one
in terms of computation speed, but it gives the slowest convergence and the
largest RMSE as illustrated in Fig. 5 and Table 2.

According to the above comparisons, our proposed fast jMHE and jMHE-
ETR achieve significantly higher estimation accuracy than the conventional
jEKF, and are also computationally much cheaper than the optimal jMHE.
Therefore, our proposed fast jMHE and jMHE-ETR algorithms strike a good
balance between estimation accuracy and computational cost.

xxiv

Figure 5: Results of implemented estimation algorithms with different initial SOC guesses
under the US06, BJDST, and DST conditions.

xxv

Table 2: RMSEs of SOC given by implemented algorithms (with Ẑ0 = 0.4) under US06,
BJDST, and DST conditions, tested on a laptop computer. The horizon lengths of the
optimal jMHE, fast jMHE, and fast jMHE-ETR are all set to N = 3.

RMSE of SOC US06 BJDST DST

jEKF 0.0145 0.0091 0.0090

optimal jMHE 0.0018 0.0024 0.0019

fast jMHE (m = 2) 0.0037 0.0022 0.0040

fast jMHE (m = 3) 0.0017 0.0014 0.0022

fast jMHE (m = 4) 0.0018 0.0023 0.0019

fast jMHE-ETR (m = 2, ε = 10−2) 0.0037 0.0022 0.0044

fast jMHE-ETR (m = 3, ε = 10−2) 0.0017 0.0014 0.0022

fast jMHE-ETR (m = 4, ε = 10−2) 0.0018 0.0023 0.0019

4.3. Tuning the number of iterations

In general, increasing the number of GN iterations results in a reduced
RMSE and an increased computational cost, as demonstrated by Fig. 6.
It should be noted that the RMSEs of SOC given by the fast jMHE and
jMHE-ETR increase from 0.0014 to 0.0023 for the BJDST dataset when the
number of GN iterations increases from 3 to 4. This observation implies that
more iterations do not necessarily result in a smaller RMSE of SOC. The
reason can be explained as follows. As in Fig. 6(b), increasing the number
of iterations indeed leads to a decreased value of the objective function in
(6) for the fast jMHE and jMHE-ETR. Although this improves the overall
RMSE of the system state vector xk, the RMSE of SOC does not necessarily
decrease since SOC is just one element of xk.

4.4. Tuning triggering threshold of fast jMHE-ETR

As shown in Tables 2 and 3, the proposed fast jMHE-ETR algorithm
with its triggering threshold ε = 10−2 achieves almost the same RMSEs of
SOC as the fast jMHE while significantly reducing the computational cost.
It is then of particular interest to investigate the rule-of-thumb for tuning
the triggering threshold ε, i.e., how the RMSE and computational cost vary
when increasing or decreasing the triggering threshold ε.

xxvi

1 2 3 4 5
10-3

10-2

(a)

fast jMHE

fast jMHE-ETR

optimal jMHE

1 2 3 4 5

10-2

100

(b)

fast jMHE

fast jMHE-ETR

optimal jMHE

1 2 3 4 5

100

(c)

fast jMHE

fast jMHE-ETR

optimal jMHE

Figure 6: RMSE of SOC, averaged objective function value, and averaged computation
time of the proposed fast jMHE and jMHE-ETR with different number of GN iterations
under the BJDST condition, tested on a laptop computer. The initial SOC guess is set to
Ẑ0 = 0.4, and the horizon length is N = 3.

xxvii

Table 3: Computational costs of implemented algorithms (with Ẑ0 = 0.4) under the
BJDST condition, tested on a laptop computer. The horizon lengths of the optimal
jMHE, fast jMHE, and fast jMHE-ETR are all set to N = 3.

Computation jEKF optimal fast fast

time (ms) jMHE jMHE jMHE-ETR

m = 3 m = 3, ε = 10−2

Average 0.0133 5.60 0.42 0.31

Worst-case 0.62 74.10 2.80 1.90

By increasing the triggering threshold ε, fewer number of relinearizations
are performed during GN iterations, as illustrated in Fig. 7. It can be
seen that relinearizations are less frequently triggered at the 2nd and 3nd
iterations than at the 1st iteration, and the triggered relinearizations become
rather sparse along with time when the threshold ε increases to 0.01 and 0.1.
Consequently, the averaged computation time monotonically decreases with
ε, while the obtained RMSE slightly increases or remains almost the same,
as demonstrated in Fig. 8.

4.5. Performance evaluation on a Raspberry Pi microcontroller

The results in Sections 4.2–4.4 are obtained by implementation with
MATLAB on a laptop computer. To further evaluate the performance of all
aforementioned algorithms on a low-cost microcontroller, we use OCTAVE on
the Raspberry Pi 4 Model B, and present the results in Tables 4 and 5. As
can be seen from Tables 2 and 4, the RMSEs of SOC on the Raspberry Pi mi-
crocontroller are at the same level as that produced by the laptop computer,
and the differences between them are mainly due to different numerical rou-
tines of OCTAVE and MATLAB. As expected, the Raspberry Pi microcontroller is
significantly slower than the laptop computer in terms of computation speed,
according to Tables 3 and 5. On the Raspberry Pi microcontroller, compared
to the optimal MHE, the proposed fast jMHE still reduces the computation
time by an order of magnitude, and the proposed fast jMHE-ETR further
reduces the computation time per sample to less than 10ms.

xxviii

0 10 20 30 40 50 60 70

3nd

2nd

1st

It
e

ra
ti
o

n
s

0 10 20 30 40 50 60 70

3nd

2nd

1st

It
e

ra
ti
o

n
s

0 10 20 30 40 50 60 70

Time (s)

3nd

2nd

1st

It
e

ra
ti
o

n
s

Figure 7: Relinearizations during the first 70s under the BJDST condition when imple-
menting fast jMHE-ETR (N = 3,m = 3) with different values of ε, tested on a laptop

computer. The initial SOC is set to Ẑ0 = 0.2, and 3 GN iterations per sample are imple-
mented. A triggered relinearization is indicated by a solid black dot.

5. Conclusion

In this paper, we propose fast moving horizon SOC estimation using an
SOC-dependent ECM subject to model mismatch, which aims at bringing
the benefits of MHE to an embedded BMS. Instead of fully solving the MHE
problem to convergence over each time horizon, the proposed fast jMHE
algorithm performs a fixed number of structure-exploiting GN iterations and
introduces the event-triggered strategy to account for limited time allowed
within each sampling interval. As demonstrated by results evaluated on both
laptop and Raspberry Pi microcontroller, the proposed fast jMHE algorithm
achieves faster convergence speed and higher estimation accuracy than the
joint EKF, and reduces the computation time per sample by more than an
order of magnitude compared to the optimal jMHE implementation. Our
future work will focus on extensions to cope with different temperatures and
aging conditions, and real-world validations on an embedded BMS platform.

xxix

10
-4

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

0

1

2

3

4

5

R
M

S
E

 o
f

S
O

C

10
-3

US06

BJDST

DST

10
-4

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

0

0.2

0.4

0.6

A
v
e

ra
g

e
d

 c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
m

s
)

Figure 8: RMSE of SOC and averaged computation time of fast jMHE-ETR (N = 3,m =
3) with different values of ε, tested on a laptop computer. The initial SOC is set to

Ẑ0 = 0.2.

Acknowledgment

This work is supported by the National Natural Science Foundation of
China (Grant No. 62373161); Hubei Provincial Natural Science Foundation
for Innovation Groups (Grant No. 2021CFA026).

References

[1] X. Lin, Y. Kim, S. Mohan, J. B. Siegel, A. G. Stefanopoulou, Modeling
and estimation for advanced battery management, Annual Review of
Control, Robotics, and Autonomous Systems 2 (2019) 393–426.

[2] Z. Wei, J. Zhao, H. He, G. Ding, H. Cui, L. Liu, Future smart battery
and management: advanced sensing from external to embedded multi-
dimensional measurement, Journal of Power Sources 489 (2021) 229462.

[3] B. Yang, J. Wang, P. Cao, T. Zhu, H. Shu, J. Chen, J. Zhang, Z. J, Clas-
sification, summarization and perspectives on state-of-charge estimation

xxx

Table 4: RMSEs of SOC given by implemented algorithms (with Ẑ0 = 0.4) under US06,
BJDST, and DST conditions, tested on Raspberry Pi 4 Model B. The horizon lengths of
the optimal jMHE, fast jMHE, and fast jMHE-ETR are all set to N = 3.

RMSE of SOC US06 BJDST DST

jEKF 0.0135 0.0088 0.0081

optimal jMHE 0.0028 0.0040 0.0024

fast jMHE (m = 3) 0.0023 0.0030 0.0020

fast jMHE-ETR (m = 3, ε = 10−2) 0.0023 0.0030 0.0020

Table 5: Computational costs of implemented algorithms (with Ẑ0 = 0.4) under the
BJDST condition, tested on Raspberry Pi 4 Model B. The horizon lengths of the optimal
jMHE, fast jMHE, and fast jMHE-ETR are all set to N = 3.

Computation jEKF optimal fast fast

time (ms) jMHE jMHE jMHE-ETR

m = 3 m = 3, ε = 10−2

Average 1.30 166.71 14.20 9.70

Worst-case 5.51 198.75 25.32 21.20

of lithium-ion batteries used in electric vehicles: A critical comprehen-
sive survey, Journa of Energy Storage 39 (2021) 102572.

[4] J. Chen, Z. Zhou, Z. Zhou, X. Wang, B. Liaw, Impact of battery cell
imbalance on electric vehicle range, Green Energy and Intelligent Trans-
portation 1 (3) (2022) 100025.

[5] J. Meng, M. Ricco, G. Luo, M. Swierczynski, D. I. Stroe, A. I. Stroe,
R. Teodorescu, An overview and comparison of online implementable
SOC estimation methods for lithium-ion battery, IEEE Transactions on
Industry Applications 54 (2) (2017) 1583–1591.

[6] Y. Gao, G. L. Plett, G. Fan, X. Zhang, Enhanced state-of-charge esti-
mation of LiFePO4 batteries using an augmented physics-based model,
Journal of Power Sources 544 (2022) 231889.

xxxi

[7] Y. Li, B. Xiong, D. M. Vilathgamuwa, Z. Wei, C. Xie, C. Zou, Con-
strained ensemble Kalman filter for distributed electrochemical state
estimation of lithium-ion batteries, IEEE Transactions on Industrial In-
formatics 17 (1) (2021) 240–250.

[8] W. Li, Y. Fan, F. Ringbeck, D. Jöst, X. Han, M. Ouyang, D. U. Sauer,
Electrochemical model-based state estimation for lithium-ion batteries
with adaptive unscented Kalman filter, Journal of Power Sources 476
(2020) 228534.

[9] G. Fan, Systematic parameter identification of a control-oriented elec-
trochemical battery model and its application for state of charge esti-
mation at various operating conditions, Journal of Power Sources 470
(2020) 228153.

[10] L. Wu, H. Pang, Y. Geng, X. Liu, J. Liu, K. Liu, Low-complexity state
of charge and anode potential prediction for lithium-ion batteries us-
ing a simplified electrochemical model-based observer under variable
load condition, International Journal of Energy Research 46 (9) (2022)
11834–11848.

[11] X. Gu, K. See, Y. Liu, B. Arshad, L. Zhao, Y. Wang, A time-series
Wasserstein GAN method for state-of-charge estimation of lithium-ion
batteries, Journal of Power Sources 581 (2023) 233472.

[12] Y. Liu, Y. He, H. Bian, W. Guo, X. Zhang, A review of lithium-ion
battery state of charge estimation based on deep learning: Directions
for improvement and future trends, Journal of Energy Storage 52 (2022)
104664.

[13] M. Ragone, V. Yurkiv, A. Ramasubramanian, B. Kashir, F. Mashayek,
Data driven estimation of electric vehicle battery state-of-charge in-
formed by automotive simulations and multi-physics modeling, Journal
of Power Sources 483 (2021) 229108.

[14] R. Zou, Y. Duan, Y. Wang, J. Pang, F. Liu, S. R. Sheikh, A novel
convolutional informer network for deterministic and probabilistic state-
of-charge estimation of lithium-ion batteries, Journal of Energy Storage
57 (2023) 106298.

xxxii

[15] Q. Yu, Y. Liu, S. Long, X. Jin, J. Li, W. Shen, A branch current esti-
mation and correction method for a parallel connected battery system
based on dual BP neural networks, Green Energy and Intelligent Trans-
portation 1 (2) (2022) 100029.

[16] Z. Deng, X. Hu, X. Lin, Y. Che, L. Xu, W. Guo, Data-driven state
of charge estimation for lithium-ion battery packs based on Gaussian
process regression, Energy 205 (2020) 118000.

[17] K.-J. Lee, W.-H. Lee, K.-K. K. Kim, Battery state-of-charge estimation
using data-driven Gaussian process Kalman filters, Journal of Energy
Storage 72 (2023) 108392.

[18] K. Fan, Y. Wan, B. Jiang, State-of-charge dependent equivalent circuit
model identification for batteries using sparse Gaussian process regres-
sion, Journal of Process Control 112 (2022) 1–11.

[19] X. Hua, C. Zhang, G. Offer, Finding a better fit for lithium ion batteries:
a simple, novel, load dependent, modified equivalent circuit model and
parameterization method, Journal of Power Sources 484 (2021) 229117.

[20] P. Xu, X. Hu, B. Liu, T. Ouyang, N. Chen, Hierarchical estimation
model of state-of-charge and state-of-health for power batteries consid-
ering current rate, IEEE Transactions on Industrial Informatics 18 (9)
(2022) 6150–6159.

[21] F. Naseri, E. Schaltz, D. I. Stroe, A. Gismero, E. Farjah, An enhanced
equivalent circuit model with real-time parameter identification for bat-
tery state-of-charge estimation, IEEE Transactions on Industrial Elec-
tronics 69 (4) (2021) 3743–3751.

[22] H. Beelen, H. J. Bergveld, M. Donkers, Joint estimation of battery
parameters and state of charge using an extended Kalman filter: a
single-parameter tuning approach, IEEE Transactions on Control Sys-
tems Technology 29 (3) (2020) 1087–1101.

[23] M. Hossain, M. Haque, M. T. Arif, Kalman filtering techniques for the
online model parameters and state of charge estimation of the li-ion
batteries: A comparative analysis, Journal of Energy Storage 51 (2022)
104174.

xxxiii

[24] W. Li, M. Rentemeister, J. Badeda, D. Jöst, D. Schulte, D. U. Sauer,
Digital twin for battery systems: Cloud battery management system
with online state-of-charge and state-of-health estimation, Journal of
Energy Storage 30 (2020) 101557.

[25] H. Chen, E. Tian, L. Wang, S. Liu, A joint online strategy of measure-
ment outliers diagnosis and state of charge estimation for lithium-ion
batteries, IEEE Transactions on Industrial Informatics 19 (5) (2023)
6387–6397.

[26] Z. Yun, W. Qin, W. Shi, State of charge estimation of lithium-ion batter-
ies with non-negligible outlier observations based on Student’s-T filter,
Journal of Energy Storage 55 (2022) 105825.

[27] Z. Liu, Z. Zhao, Y. Qiu, B. Jing, C. Yang, State of charge estimation for
li-ion batteries based on iterative Kalman filter with adaptive maximum
correntropy criterion, Journa of Power Sources 580 (2023) 233282.

[28] Z. Yun, W. Qin, W. Shi, State of charge estimation of lithium-ion bat-
tery under time-varying noise based on variational Bayesian estimation
methods, Journal of Energy Storage 52 (2022) 104916.

[29] J. B. Rawlings, B. R. Bakshi, Particle filtering and moving horizon es-
timation, Computers & Chemical Engineering 30 (2006) 1529–1541.

[30] J. Shen, Y. He, Z. Ma, H. Luo, Z. Zhang, Online state of charge esti-
mation of lithium-ion batteries: a moving horizon estimation approach,
Chemical Engineering Science 154 (2016) 42–53.

[31] J. Shen, J. Shen, Y. He, Z. Ma, Accurate state of charge estimation with
model mismatch for Li-ion batteries: a joint moving horizon estimation
approach, IEEE Transactions on Power Electronics 34 (5) (2018) 4329–
4342.

[32] H. Ren, H. Zhang, Z. Gao, Y. Zhao, A robust approach to state of
charge assessment based on moving horizon optimal estimation consid-
ering battery system uncertainty and aging condition, Journal of Cleaner
Production 270 (2020) 122508.

xxxiv

[33] J. Shen, Q. Wang, G. Zhao, Z. Ma, Y. He, A joint moving horizon strat-
egy for state-of-charge estimation of lithium-ion batteries under com-
bined measurement uncertainty, Journal of Energy Storage 44 (2021)
103316.

[34] Z. Wei, J. Hu, Y. Li, H. He, W. Li, D. U. Sauer, Hierarchical soft mea-
surement of load current and state of charge for future smart lithium-ion
batteries, Applied Energy 307 (2022) 118246.

[35] X. Hu, D. Cao, B. Egardt, Condition monitoring in advanced battery
management systems: moving horizon estimation using a reduced elec-
trochemical model, IEEE/ASME Transactions on Mechatronics 23 (1)
(2017) 167–178.

[36] X. Hu, H. Jiang, F. Feng, B. Liu, An enhanced multi-state estimation hi-
erarchy for advanced lithium-ion battery management, Applied Energy
257 (2020) 114019.

[37] Y. Chen, C. Li, S. Chen, H. Ren, Z. Gao, A combined robust approach
based on auto-regressive long short-term memory network and moving
horizon estimation for state-of-charge estimation of lithium-ion batter-
ies, International Journal of Energy Research 45 (9) (2021) 12838–12853.

[38] E. D. R. Lopes, M. M. Soudre, C. H. Llanos, H. V. H. Ayala, Nonlinear
receding-horizon filter approximation with neural networks for fast state
of charge estimation of lithium-ion batteries, Journal of Energy Storage
68 (2023) 107677.

[39] A. Alessandri, M. Gaggero, Fast moving horizon state estimation for
discrete-time systems using single and multi iteration descent methods,
IEEE Transactions on Automatic Control 62 (9) (2017) 4499–4511.

[40] P. Kühl, M. Diehl, T. Kraus, J. P. Schlöder, H. G. Bock, A real-time al-
gorithm for moving horizon state and parameter estimation, Computers
& Chemical Engineering 35 (1) (2011) 71–83.

[41] A. Wynn, M. Vukov, M. Diehl, Convergence guarantees for moving hori-
zon estimation based on the real-time iteration scheme, IEEE Transac-
tions on Automatic Control 59 (8) (2014) 2215–2221.

xxxv

[42] A. Aravkin, J. V. Burke, L. Ljung, A. Lozano, G. Pillonetto, Generalized
Kalman smoothing: Modeling and algorithms, Automatica 86 (2017)
63–86.

[43] K. Baumgärtner, J. Frey, R. Hashemi, M. Diehl, Zero-order moving hori-
zon estimation for large-scale nonlinear processes, Computers & Chem-
ical Engineering 154 (2021) 107433.

[44] M. Lenz, D. Jöst, F. Thiel, S. Pischinger, D. U. Sauer, Identification of
load dependent cell voltage model parameters from sparse input data us-
ing the mixed integer distributed ant colony optimization solver, Journal
of Power Sources 437 (2019) 226880.

[45] N. Haverbeke, Efficient numerical methods for moving horizon estima-
tion, Diss., Katholieke Universiteit Leuven, Heverlee, Belgium (2011).

[46] J. Yan, S. Li, Y. Wan, Lithium-ion battery state-of-charge estimation
using a real-time moving horizon estimation algorithm, in: Proceedings
of 2021 CAA Symposium on Fault Detection, Supervision, and Safety
for Technical Processes, Chengdu, China, 2021.

[47] F. Zheng, Y. Xing, J. Jiang, B. Sun, J. Kim, M. Pecht, Influence of
different open circuit voltage tests on state of charge online estimation
for lithium-ion batteries, Applied Energy 183 (2016) 513–525.

[48] S. Du, Y. Wan, Code from: Towards fast embedded moving horizon
state-of-charge estimation for lithium-ion batteries, Mendeley Data, V3
(2023). doi:10.17632/3zv48n4jn5.3.
URL https://data.mendeley.com/datasets/3zv48n4jn5/3

xxxvi

https://data.mendeley.com/datasets/3zv48n4jn5/3
https://data.mendeley.com/datasets/3zv48n4jn5/3
https://doi.org/10.17632/3zv48n4jn5.3
https://data.mendeley.com/datasets/3zv48n4jn5/3

	Introduction
	SOC-dependent ECM and problem description
	Fast moving horizon joint SOC and parameter estimation
	MHE formulation for joint SOC and parameter estimation
	Fast joint MHE algorithm
	Event-triggered relinearization
	Comparisons and discussions

	Estimation results using experimental data
	Dataset description and ECM identification
	Comparisons of estimation performance and computational costs
	Tuning the number of iterations
	Tuning triggering threshold of fast jMHE-ETR
	Performance evaluation on a Raspberry Pi microcontroller

	Conclusion

