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Abstract

Accurate prediction of remaining useful life (RUL) is crucial for predictive maintenance of industrial systems. Although data-driven
RUL prediction methods have received considerable attention, they typically require massive run-to-failure (R2F) data which is of-
ten unavailable in practice. If not properly addressed, training with a limited number of R2F trajectories not only leads to large
errors in RUL prediction, but also causes difficulty in quantifying the prediction uncertainty. To address the above challenge, this
paper proposes a Bayesian ensemble RUL prediction method that combines mode-dependent relevance vector machine (RVM) and
trajectory similarity. Firstly, the proposed approach clusters historical R2F trajectories of unequal lengths into different degradation
modes, and constructs RVM and similarity based predictions with improved accuracy by using mode-dependent libraries of kernel
functions and similar trajectories. Secondly, the proposed Bayesian ensemble scheme fuses the RVM and similarity based pre-
dictions, and quantifies the associated prediction uncertainty even though the number of historical R2F trajectories are limited. In
two case studies involving bearings and batteries, using only 11 and 16 R2F trajectories as training data, respectively, the proposed
method reduces the mean absolute percentage error of RUL prediction by more than 20% compared to three existing methods.

Keywords: Remaining useful life prediction, mode-dependent prediction, relevance vector machine, trajectory similarity,
Bayesian ensemble.

1. Introduction

Prognostics and health management (PHM) is a rapidly
growing field that has received significant attention from both
academia and industry due to the imperative to accurately pre-
dict the monitored equipment’s remaining useful life (RUL) for
predictive maintenance [1–4]. Accurate RUL prediction is crit-
ical to optimize system performance, reduce downtime, and
lower maintenance costs [1–4].

Existing RUL prediction methods can be categorized into
three categories: physical model-based, data-driven, and hybrid
methods [1, 4, 5]. Physical model-based approaches involve
establishing first-principle models that describe the complex
degradation mechanisms [6–10]. However, developing accurate
mathematical models for most practical degradation processes
can be challenging due to limited knowledge of degradation
physics. Without requiring first-principle models, data-driven
methods leverage various machine learning models to predict
RUL [11–15]. The conventional machine learning models for
RUL prediction include support vector machine [11, 12], rel-
evance vector machine (RVM) [13], and Gaussian process re-
gression [14, 15], et al. With recent progress in deep learning,
long short-term memory networks [16, 17], convolution neural
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networks (CNN) [18, 19], and recurrent neural networks [20]
have emerged in the field of PHM, aiming to iteratively learn
the mapping function from degradation features to RUL [21].
Although these deep learning models have demonstrated supe-
rior prediction accuracy in recent literature [22], they usually
require a large amount of training data and are lack of inter-
pretability, which restricts their applications in industrial prac-
tice where run-to-failure (R2F) data is often limited [23]. The
hybrid approach integrates multiple methods to overcome the
limitation of each individual method, which has received wide
attention in recent years. For example, the machine learning
model and empirical exponential degradation model are com-
bined in [5, 24] to further improve RUL prediction accuracy.
However, existing hybrid methods in literature still do not fully
address the issue of limited R2F data.

As a data-driven RUL prediction method, the similarity based
approach has the advantages of strong interpretability and sim-
ple implementation [3, 25]. It relies on the assumption that the
online test trajectory follows a similar trend to that of a HT
if they both experience similar operating conditions. By in-
troducing a similarity metric, the similarity based method first
searches along each historical trajectory (HT) to locate a seg-
ment that exhibits high similarity to the online test trajectory.
The next step is to determine RUL as the duration from the end
of the best matching segment to the failure point of the corre-
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sponding HT [3, 25].
The similarity based RUL prediction algorithms have con-

tinued to develop and improve prediction accuracy. Recent
relevant research has focused on improving similarity evalua-
tion, uncertainty quantification, and model prediction aggrega-
tion. Several techniques have been proposed for improved sim-
ilarity evaluation, including dynamic time warping [26], max-
imum mean discrepancy [27–30] and the combination of mul-
tiple similarity calculations [31–34]. To quantify the predic-
tion uncertainty, kernel density estimation [34, 35] and Weibull
distribution [27, 36] have been employed to determine the dis-
tribution of RUL and provide appropriate confidence intervals.
Ensemble algorithms, including multiscale similarity ensemble
[37], and support vector regression and trajectory similarity in-
tegration [38], have also been introduced to enhance the robust-
ness and accuracy of RUL prediction. Despite these advance-
ments, the similarity based methods still face the following lim-
itations:

i) The existing literature often assumes the availability of
abundant HTs and a sufficient number of similar trajecto-
ries [39, 40]. In practice, however, the number of complete
HTs is typically limited [2, 3], and the similarity between
HTs and online trajectories is often low. This adversely
affects RUL prediction accuracy, and presents a challenge
to quantify the prediction uncertainty.

ii) The majority of similarity based RUL prediction methods
fail to fully leverage distinctive characteristics of differ-
ent degradation modes which represent the overall trends
of degradation trajectories under a spectrum of operat-
ing conditions. Instead, the conventional similarity based
method locally evaluates degree of similarity between the
HTs and the online test trajectory. While two trajecto-
ries may exhibit high local similarity at a specific time
instant, they may still belong to different degradation
modes, resulting in significant discrepencies in their future
trends. This implies that the conventional similarity based
method, which does not distinguish between degradation
modes, can lead to considerable prediction errors.

To address the above limitations of existing similarity based
prediction methods, we propose a mode-dependent RVM-
similarity based Bayesian ensemble method in this paper.
Firstly, we perform offline mode clustering of HTs of unequal
lengths using time feature vectors of the same dimension asso-
ciated with equally spaced samples along each trajectory. For
each degradation mode, we also construct a trajectory library
and the corresponding kernel function library. Then, we iden-
tify the degradation mode of the test trajectory online, and es-
tablish mode-dependent RVM and similarity based HI predic-
tions. These two predictions are adaptively fused by a Bayesian
regression approach to determine RUL with uncertainty quan-
tification.

The main contributions are summarized as follows:

i) We propose a Bayesian framework that fuses the RVM and
similarity based HI predictions in an adaptive ensemble.
This Bayesian ensemble approach not only addresses the

limitation of inadequate long-term prediction capability of
RVM, but also mitigates performance loss of the similarity
based prediction due to lack of highly similar HTs. In ad-
dition, this Bayesian ensemble approach generates an ap-
propriate confidence interval for the predicted RUL with-
out necessitating an extensive amount of historical data.
Consequently, the proposed Bayesian ensemble method
improves prediction accuracy and enhances the ability to
generalize in the presence of limited historical R2F data.

ii) We propose mode-dependent prediction with improved ac-
curacy by distinguishing different degradation modes. By
doing so, our proposed mode-dependent similarity based
prediction excludes dissimilar HTs, and our proposed
mode-dependent RVM based prediction selects more suit-
able values of hyperparameters within the kernel library
that align with the identified degradation mode.

The remainder of this paper is structured as follows: Sec-
tion 2 presents the proposed mode-dependent RVM-similarity
based Bayesian ensemble algorithm. Using the PHM2012 bear-
ing dataset and the Toyota battery dataset, we illustrate the ad-
vantage of our approach by extensive comparisons with some
existing approaches in literature in Sections 3 and 4. Some con-
cluding remarks are provided in Section 5.

2. Methodology

In this section, we propose the mode-dependent RVM-
similarity based Bayesian ensemble RUL prediction method
whose flowchart is shown in Figure 1. Before applying our
proposed algorithm, the health indicator (HI) is extracted from
the original condition monitoring data to reflect the degradation
status [40], which is not the focus of this paper. In the offline
phase, HTs of extracted HIs are clustered into different modes
using K-means clustering. Each cluster of HTs is regarded as a
trajectory library, and their RVM modeling determines the asso-
ciated kernel functions as a kernel library corresponding to the
specific trajectory library. In the online phase, mode identifica-
tion of the online HI trajectory is performed to determine the
corresponding trajectory library and kernel library for mode-
dependent predictions using RVM and trajectory similarity. Fi-
nally, the Bayesian ensemble approach is leveraged to aggre-
gate the RVM and similarity based predictions and quantify the
aggregated RUL distribution.

2.1. Offline mode clustering of historical trajectories
The degradation trajectories of a system are diverse due to the

effect of different operating conditions or various fault factors
[41]. For example, as depicted in Figure 2, multiple degradation
trajectories of bearings can be roughly classified into slow mode
(e.g., trajectory 1-1) and rapid mode (e.g., trajectory 1-2). In the
offline phase, we cluster HTs into different degradation modes.
This allows the use of mode-dependent prediction models to
improve the accuracy of RUL predictions later in Sections 2.3
and 2.4.

The celebrated K-means algorithm is adopted to cluster the
HTs, and its basic idea is to assign each trajectory to the cluster
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Figure 1: The flowchart of the proposed approach

0 0.5 1 1.5 2 2.5 3

Time(s) 104

0

0.5

1

1.5

2

H
e
a
lt
h
 I
n
d
ic

a
to

r

Degradation trajectories under condition 1

1-1

1-2

1-3

1-4

1-5

1-6

1-7

Figure 2: The bearing degradation trajectories.

represented by the nearest cluster center [42]. In the existing
RUL literature, K-means clustering is often used in trajectory
segment [17, 43], i.e., dividing one trajectory into healthy or
damaged stages. In contrast, we focus on the mode clustering
of multiple trajectories in this paper. A key difficulty in clus-
tering multiple trajectories is coping with their unequal lengths.
This issue cannot be solved by simply clipping or extrapolating
trajectories as either option results in loss or error of degrada-
tion information.

To cluster trajectories of unequal lengths, we introduce a
novel method that does not directly use the HI values of
each degradation trajectory as the clustering feature. Instead,
the clustering feature of each trajectory Ti is extracted as a
n-dimensional vector ti of time indices corresponding to n
equally-spaced HI values between the start of degradation and
the end of life.

Detailed procedures for extracting the above clustering fea-
ture are as follows:

i) Data fitting for each HT
Along each trajectory Ti, we collect data points
{(ti

j, c
i
j)}

ni
j=1, where ti

j represents the jth inspection time
along the trajectory Ti, ci

j denotes the corresponding HI
value, and ni is the number of data points. It is assumed
that all the available trajectories start degradation at the
same HI value cd and end with the same HI value ce. If
such an assumption does not hold for the original degrada-
tion trajectories, we perform a normalized transformation
before trajectory clustering. To accomplish this, the con-
ventional min-max normalization is not applicable since
the min/max HI values are not available beforehand for an
online degradation process. Therefore, without requiring
the knowledge of min/max HI values, we follow the idea
of confidence value in [44] to construct the normalized HI
which takes values within the range of [0, 1]:

HInorm =
2

1 + e−a·HI − 1, (1)
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where a is the scaling parameter defined as

a = −
ln( HIdef

2−HIdef
)

mean(HIhealthy)
, (2)

with HIdef being a predefined HI value at the end of life,
and mean(HIhealthy) representing the averaged HI during
the healthy stage before degradation is detected. A higher
value of the normalized HI in (1) indicates a higher degree
of degradation.

ii) Feature extraction
To facilitate feature extraction, we first leverage the mono-
tonic trend of the degradation process to construct a func-
tion (see Remark 1 for more explanations)

t = gi(c) (3)

from the data points {(ti
j, c

i
j)}

ni
j=1 (normalized if needed)

for each trajectory Ti, via piecewise linear interpola-
tion. Then, on each trajectory Ti, we select n sam-
ples which are equally spaced along the HI axis, i.e.,
cd, c1, c2, · · · , cn−2, ce, with the sampling interval

∆c = |c1 − cd | = |c2 − c1| = · · · = |ce − cn−2| (4)

and find their corresponding time indices {δti
j}

n
j=1 along

each trajectory Ti as the clustering feature

ti = [ti
d, δt

i
1, δt

i
2, · · · , δt

i
n−1], (5)

with gi(·) defined in (3), and

ti
d = gi(cd), (6a)

δti
1 = gi(c1) − gi(cd), (6b)

δti
j = gi(c j) − gi(c j−1), j = 2, · · · , n − 2, (6c)

δti
n−1 = gi(ce) − gi(cn−2). (6d)

Take the battery degradation trajectory in Figure 3 as an
example. We consider the knee point between the healthy
and degraded stages as (td, cd), and introduce an HI sam-
pling interval ∆c to divide the HI range [cd, ce] into n − 1
equally-spaced segments. The clustering feature for the
mth battery is tm = [tm

d , δt
m
1 , δt

m
2 , · · · , δt

m
n−1]. For exam-

ple, the battery HI range spanning from cd = 1.045 to
ce = 0.887 is divided into n − 1 = 4 segments by choosing
the HI sampling interval ∆c = 0.033, then the calculation
of tm would consist of the time values associated with HIs
[1.045, 1.012, 0.979, 0.946, 0.913].

iii) Clustering of feature vectors
We perform mode clustering of all HTs by applying K-
means clustering to the feature vectors {ti}.

By applying the above procedures with a fixed integer n, the
extracted feature vector ti has the same dimension n for a run-
to-failure trajectory of any given length, and is able to capture
the major information of the degradation process for mode clus-
tering.

d

1

2

Figure 3: The battery degradation trajectory and its clustering feature.

To determine the number of clusters for the HTs, the gap
statistic method in [45] or the silhouette method in [46] can be
used, whose details are omitted and referred to [45, 46]. Each
cluster r contains S r HTs which form the HT library {T r

i }
S r
i=1

under mode r.

Remark 1. The above mode clustering method is limited to
monotonic degradation processes, because the function in (3)
allows only one time index t at a particular HI value c. If
the degradation trajectory has a monotonic trend contami-
nated by stochastic non-monotonic variations, we may first ob-
tain the smoothed monotonic degradation trend by filtering out
the stochastic variations, and then apply our proposed mode
clustering method. It is more challenging to clustering non-
monotonically trended degradation trajectories, which is left to
our future research.

Remark 2. With limited R2F data, K-means clustering has dif-
ficulty in accurately determining the number of degradation
modes, but it can still ensure reasonably small within-cluster
distances since K-means clustering is obtained by minimizing
the sum of squared within-cluster distances [42]. This is suffi-
cient for our proposed mode-dependent HI prediction presented
later in Sections 2.3 and 2.4 to achieve the goal of selecting
the most similar degradation mode and avoiding interference
from dissimilar trajectories. Another issue with limited train-
ing data is that the online trajectory might have low similarity
to all historical trajectories, which renders the similarity based
prediction in Section 2.4 unreliable. This issue is effectively
accommodated by the subsequent Bayesian ensemble step in
Section 2.5: the similarity based prediction would be assigned
with a lower weight in the learned Bayesian regression model
in this case, while the RVM based prediction would dominate
the Bayesian ensemble output.

Remark 3. The dimension n of each feature vector ti should
be sufficiently large such that the dynamic evolution pattern of
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a given degradation trajectory is fully characterized. This im-
plies that we would obtain poor clustering performance and
inaccurate RUL prediction if the dimension n of the clustering
feature is too small. It should be also noted that a too-large n
brings just a marginal performance improvement while intro-
ducing unnecessarily heavier computational burden.

2.2. Online mode identification

The online mode identification uses the clustering features
mentioned in Section 2.1 to determine which mode an online
trajectory belongs to. For this purpose, we follow the proce-
dures as below:

i) Data fitting for the online trajectory
This step is the same as Step i) for the HTs in Section 2.1.

ii) Feature extraction of the online trajectory
Let con

t denote the online HI value at current time t. Using
the sampling interval ∆c in (4), there are fn sampled HI
values along the online trajectory, where fn is

fn = ⌊
con

t − cd

∆c
⌋ (7)

with ⌊·⌋ representing the floor function that outputs the
greatest integer less than or equal to a given real number.
By applying the same procedure as Step ii) for the HTs in
Section 2.1, we obtain the extracted clustering feature of
the online trajectory

ton = [ton
d , δt

on
1 , · · · , δt

on
fn−1]. (8)

iii) Mode identification of the online trajectory
For each cluster r of the HTs, the center of the extracted
feature vectors is represented by cr. It should be noted
that each HT is a complete R2F trajectory whilst an online
trajectory is just a partial R2F process. Then the center of
the extracted feature vectors cr associated with HTs has a
higher dimension than that of the online feature vector ton

in (8). As such, the distance between cr and ton can be
measured by

Dr = ∥ton − cr(1 : fn)∥2, (9)

where cr(1 : fn) represents the first fn dimensional features
of the cluster center of cluster r. Then, the mode κ of the
online trajectory is determined as the one whose cluster
center has the shortest distance to the online feature vector
ton, i.e.,

κ = arg min
r

Dr, (10)

where Dr is defined in (9), and κ is the cluster to which the
online trajectory belongs. The next mode identification
is triggered whenever the change of the online HI value
con

t with respect to the previous mode center exceeds the
specified sampling interval ∆c.

Through the above steps, we determine the corresponding
trajectory library {T κi }

S κ
i=1 under mode κ for the online trajectory.

2.3. Mode-dependent RVM based HI prediction
In this section, we first briefly review preliminaries of RVM,

and then propose a mode-dependent RVM based RUL predic-
tion method which adaptively selects its kernel function accord-
ing to the identified degradation mode.

Let {t, c} denote a pair of the time t and its corresponding HI
value c, which belongs to the available dataset {ti, ci}

N
i=1. The

underlying input-output relationship is

c = f (t) + ϵ, (11)

where ϵ = N(0, σ2) is a Gaussian noise. In RVM, the nonlinear
function f (t) is expressed as a weighted sum of basis functions
given by kernels, i.e.,

f (t) =
N∑

i=1

wik(t, ti) + b, (12)

where k(t, ti) is the kernel function describing the correlation
between t and ti, and b is the bias.

Define the input and output data as t = {ti}Ni=1 and c = {ci}
N
i=1.

According to (11), the conditional probability of the output data
c is expressed as [42, 47]

p(c|t,w, σ2) =
N+1∏
i=1

p(ci|ti,wi, σ
2) =

N+1∏
i=1

N(ci| f (ti), σ2
ϵ ),

(13)
where wN+1 presents the bias b, and w = (w1,w2, ...,wN+1). The
prior distribution of w is set to the following isotropic Gaussian
distribution [42, 47]:

p(w|α) =
N+1∏
i=1

N(wi|0, α−1
i ), (14)

where αi is the precision parameter for wi, and α =[
α1 α2 · · · αN+1

]⊤
. According to the Bayes rule, the pos-

terior distribution of w is derived as [42, 47]

p(w|c, t,α, σ2) =
p(c|t,w, σ2)p(w|α)

p(c|t, σ2)
= N(w|µw,Σw), (15)

where µw and Σw are defined as

µw = ΣΦ
⊤Bc, Σw = (A + Φ⊤BΦ)−1, (16a)

A = diag(α1, α2, ..., αN+1), B = σ−2IN , (16b)

Φ =
[
K(t, t1) K(t, t2) · · · K(t, tN) 1N×1,

]
, (16c)

K(t, ti) =
[
k(t1, ti) k(t2, ti) · · · k(tN , ti)

]⊤
, (16d)

with diag(α1, α2, ..., αN+1) being a diagonal matrix with
α1, α2, · · · , αN+1 being its diagonal elements. The hyperparam-
eters σ2 and α =

[
α1 α2 · · · αN+1

]⊤
in the above formulas

are determined by maximizing the marginal likelihood function
[42, 47]

(α̂, σ̂2) = arg max
α,σ2

ln p(c|t,α, σ2), (17)

where α̂ and σ̂2 represent the estimated α and σ2. To reduce
the computational cost, the sequential sparse Bayesian learning
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algorithm [48] is adopted to estimate α̂ and σ̂2. If the estimate
of αi is infinity, the posterior distribution of the corresponding
weight wi has zero mean and zero variance, i.e., wi = 0. In
this case, the kernel functions associated with zero wi do not
contribute to the target output, hence are pruned. Therefore,
the target output is only decided by the kernel functions corre-
sponding to the nonzero wi’s. The inputs corresponding to these
nonzero wi’s are known as Relevance Vectors (RVs).

At a future time instant t∗, the RVM based HI prediction cRVM
t∗

follows the posterior distribution [42, 47]

p(cRVM
t∗ |t∗, t, c) = N

(
ĉRVM

t∗ , (σRVM
t∗ )2

)
, (18a)

ĉRVM
t∗ = µ⊤w K(t, t∗), (18b)

(σRVM
t∗ )2 = σ̂2 + K(t, t∗)⊤ΣwK(t, t∗), (18c)

with µw, Σw, and K(t, t∗) defined in (16).
According to (18b) and (18c), the choice of kernel function

has a significant impact on the predicted HI at a given time.
Therefore, it is essential to assess the effect of different kernel
functions on the RVM based prediction. Using the bearing sys-
tem as an example, we compare the performance of the RVM
based predictions using different kernel functions under two
degradation modes. In this paper, we adopt two kernel func-
tions as follows:

i) Polynomial kernel function k(t, ti) = (t − ti)p;
ii) Exponential kernel function k(t, ti) = exp

(
|t−ti |
λ2

)
.

Figure 4 illustrates the effect of polynomial and exponen-
tial kernels under different degradation modes. Under the slow
mode, the polynomial kernel performs better than the exponen-
tial kernel. However, under the rapid degradation mode, the ex-
ponential kernel outperforms the polynomial kernel. Therefore,
it is both necessary and effective to choose a suitable kernel
function for a specific degradation mode. Different degradation
modes are distinguished via offline mode clustering in Section
2.1 and online mode identification in Section 2.2.
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Figure 4: Comparison of RVM based predictions using different kernel func-
tions under different degradation modes

For each degradation mode, we establish an appropriate ker-
nel library by including a set of appropriate kernel functions
of different types or parameters. To this end, we first design
a collection of kernels, including polynomial and exponential
kernels, covering a wide range of degrees and widths. A wider
range of degrees or widths generally implies a higher expres-
sive power of the kernel library. Subsequently, these kernel
functions are employed to predict the RUL of the trajectories
in our trajectory libraries. Finally, for each HT, we include the
first m kernel functions with the smallest sum of errors in the
kernel library corresponding to its mode. If a trajectory library
contains n HTs, the resulting kernel library for that mode will
consist of no more than mn kernel functions.

For online prediction at time t, we first select the optimal pre-
diction kernel from the corresponding kernel library by evalu-
ating the root mean square error (RMSE) ∆ of the online trajec-
tory over the sliding window [t − ton + 1, t]

∆ =

√√√
1

ton

t∑
i=t−ton+1

(con
i − ĉRVM

i )2, (19)

where con
i is the HI of online trajectory and ĉRVM

i represents
the RVM based prediction at time i. By doing so, the kernel
function with the minimum RMSE in the corresponding kernel
library is used in online prediction.

2.4. Mode-dependent similarity based HI prediction

The conventional similarity based method suffers from dis-
similar HTs [39]. To address this issue, we leverage the iden-
tified degradation mode in Section 2.2, and perform the sim-
ilarity based RUL prediction using only the trajectory library
corresponding to the identified degradation mode of the online
trajectory. By doing so, we reduce the interference of dissimilar
HTs in the other degradation modes.

In Section 2.2, we determine the mode κ of online trajectory
and the corresponding trajectory library {T κj }

S κ
j=1. To compute

the similarity between the online trajectory and a particular HT
T κl , we need to shift the online trajectory step by step towards
the end of T κl . Specifically, we compute the distance between
two vectors of HI values, i.e.,

dl
p =

√∥∥∥con
t − cl

p

∥∥∥2
2, ton ≤ p ≤ tl

end, (20)

where tl
f represents the failure time of the HT T κl ,

con
t =

[
con

t−ton+1 · · · con
t

]⊤
(21)

is the HI values of the online trajectory over a recent time win-
dow [t − ton + 1, t] of length ton, and

cl
p =

[
cl

p−ton+1 · · · cl
p

]⊤
(22)

over a different time window [p − ton + 1, p] moves along the
HT T κl as p varies. For the considered HT T κl , we find its best-
matching segment which gives the shortest distance to the on-
line trajectory, as depicted in Figure 5. For each HT T κl , the
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best-matching segment ends at the point

ql = arg min
ton≤p≤tl

f

dl
p. (23)

With {ql}
S κ
l=1 computed for all HTs within the trajectory li-

brary of the identified mode κ, we predict HI at a future time
t∗ as the weighted average of the HTs of the identified mode κ,
i.e.,

cTS
t∗ =

S κ∑
l=1

wlcl
t∗−t+ql

, (24)

where cTS
t∗ represents the similarity based HI prediction at time

t∗, cl
t∗−t+ql

is the HI value of the lth HT at time t∗ − t + ql that
matches with the predicted HI ĉTS

t∗ , and wl is the weight assigned
to the lth HT. S κ is the number of HTs in the trajectory library
corresponding to the identified degradation mode κ of the on-
line trajectory. If the recorded lth HT ends before the future
time t∗ − t + ql, it does not have the HI value cl

t∗−t+ql
used in

(24). To circumvent this issue, we perform linear extrapolation
to determine cl

t∗−t+ql
for the lth HT.
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Figure 5: Illustration of trajectory similarity

To determine weights in (24), we formulate a non-negative
least squares (NNLS) problem which is expressed as [49, 50]

min
w≥0

∥∥∥Cw − con
t

∥∥∥2
2 , (25)

where w =
[
w1 w2 · · · wS κ

]⊤
is the weight vector, C =[

c1
q1

c2
q2
· · · cS κ

qS κ

]
is a matrix of size ton × S κ with cl

p defined in
(22), and con

t is defined in (21).

2.5. Bayesian ensemble for RUL prediction

In this section, we fuse the aforementioned two HI pre-
dictions within a Bayesian ensemble scheme to predict RUL.
Firstly, we adopt a Bayesian regression approach to compute
the fused HI prediction with uncertainty quantification. Then,
the estimated RUL and its uncertainty interval are determined
by comparing the fused HI prediction with the predefined fail-
ure threshold.

To fuse the RVM based HI prediction cRVM
t in (18) and the

similarity based HI prediction cTS
t in (24) at time t, the follow-

ing Bayesian regression model is used:

ct = η
⊤zt + vt, zt =

[
cRVM

t
cTS

t

]
, (26)

where the model output is the fused HI prediction ct, η is the
model coefficient vector, and vt represents the output noise. As
a common practice in Bayesian regression, we assume that both
the prior distribution of η and the noise distribution of vt are
Gaussian with zero mean, i.e.,

p(η|αη) = N
(
η
∣∣∣0,α−1

η

)
, p(vt) = N

(
vt

∣∣∣0, β−1
v

)
, (27)

with the diagonal matrix αη ∈ R2×2 and the scalar βv in (27)
being the hyperparameters.

Before computing the fused HI prediction, we first deter-
mine the hyperparameters αη and βv in (27) by maximizing the
marginal likelihood function, i.e.,

(α̂η, β̂v) = arg max
αη,βv

ln p
(
con

t

∣∣∣Zt,αη, βv

)
, (28)

using the output data con
t defined in (21) and the input data

Zt =


ĉRVM

t−ton+1 cTS
t−ton+1

...
...

ĉRVM
t cTS

t

 (29)

over a recent time window [t − ton + 1, t], with ĉRVM
t being the

predicted mean in (18b) from the RVM based method. More de-
tails for formulating the above marginal likelihood maximiza-
tion problem are referred to Section 3.5 in [42]. Since solving
the non-convex problem (28) repeatedly at each time instant can
be computationally prohibited for online RUL prediction, we
adopt a suboptimal approach instead by performing grid search
over a predefined range of (αη, βv), which works well for the
case studies in Sections 3 and 4.

With the learned parameters α̂η and β̂v in (28), the posterior
distribution of the model coefficient η is derived as [42]

p(η|con
t ,Zt) = N(η

∣∣∣µη,t,Ση,t ),

µη,t = β̂vΣηZ⊤t con
t , Ση,t = (β̂vZ⊤t Zt + α̂ηI2)−1,

(30)

with con
t and Zt defined in (21) and (29), respectively.

Given the input zt∗ at a future time t∗, the Bayesian regres-
sion model (26) predicts the fused HI by its posterior predictive
distribution [42]

p
(
ct∗

∣∣∣zt∗ , con
t ,Zt

)
=

∫
p
(
ct∗

∣∣∣zt∗ , η, con
t ,Zt

)
p(η|con

t ,Zt)dη

=

∫
N

(
ct∗

∣∣∣η⊤zt∗ , β̂
−1
v

)
N

(
η
∣∣∣µη,t,Ση,t ) dη

= N
(
ct∗

∣∣∣µc(zt∗ ), σ2
c(zt∗ )

)
(31)

which is derived using (27) and (30), with

µc(zt∗ ) = µ⊤η,tzt∗ , σ
2
c(zt∗ ) = β̂−1

v + z⊤t∗Ση,tzt∗ . (32)
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It should be noted that within the input vector zt∗ =[
cRVM

t∗ cTS
t∗

]⊤
, the RVM based HI prediction cRVM

t∗ is probabilis-

tic, i.e., cRVM
t∗ ∼ N

(
cRVM

t∗
∣∣∣ĉRVM

t∗ , (σRVM
t∗ )2

)
given in (18), whilst

the similarity based HI prediction cTS
t∗ is deterministic. Consid-

ering such an uncertain element cRVM
t∗ within the input zt∗ , the

fused HI prediction ct∗ actually follows the marginal posterior
predictive distribution

p
(
ct∗

∣∣∣cTS
t∗ , c

on
t ,Zt

)
=∫

p
(
ct∗

∣∣∣∣∣∣zt∗ =

[
cRVM

t∗

cTS
t∗

]
, con

t ,Zt

)
N

(
cRVM

t∗
∣∣∣ĉRVM

t∗ , (σRVM
t∗ )2

)
dcRVM

t∗ ,

(33)
which is marginalized with respect to cRVM

t∗ . As indi-
cated in (31) and (32), the posterior predictive distribution
p
(
ct∗

∣∣∣zt∗ , con
t ,Zt

)
= N

(
ct∗

∣∣∣µc(zt∗ ), σ2
c(zt∗ )

)
has a complicated

dependence on the uncertain input cRVM
t∗ . Hence it is intractable

to derive an analytical closed-form solution for the integral in
(33). To address this issue, we resort to the Monte-Carlo based
numerical approximation:

p
(
ct∗

∣∣∣cTS
t∗ , c

on
t ,Zt

)
≈

1
Ns

Ns∑
i=1

p
(
ct∗

∣∣∣∣∣∣zt∗ (i) =
[
cRVM

t∗ (i)
ĉTS

t∗

]
, con

t ,Zt

)

=
1
Ns

Ns∑
i=1

N
(
ct∗

∣∣∣µc(zt∗ (i)), σ2
c(zt∗ (i))

)
(34)

where
{
cRVM

t∗ (i)
}Ns

i=1
are independent samples from the probabil-

ity distribution N
(
cRVM

t∗
∣∣∣ĉRVM

t∗ , (σRVM
t∗ )2

)
. With derivations de-

tailed in Appendix Appendix A, we obtain the marginal poste-
rior predictive distribution p

(
ct∗

∣∣∣cTS
t∗ , c

on
t ,Zt

)
as

p
(
ct∗

∣∣∣cTS
t∗ , c

on
t ,Zt

)
= N

(
ct∗

∣∣∣µc,t∗ , σ
2
c,t∗

)
, (35a)

µc,t∗ =
1
Ns

Ns∑
i=1

µc(zt∗ (i)), (35b)

σ2
c,t∗ =

1
Ns

Ns∑
i=1

σ2
c(zt∗ (i)) +

(
µc(zt∗ (i)) − µ̄c,t∗

)2 , (35c)

with zt∗ (i) defined in the first equation of (34). The mean µc,t∗

in (35b) can be regarded as the point HI prediction at the future
time t∗. Then, the 95% confidence interval [ct∗ , ct∗ ] of the fused
HI prediction is calculated as

ct∗ = µc,t∗ + 1.96σc,t∗ , ct∗ = µc,t∗ − 1.96σc,t∗ . (36)

When the predicted HI reaches a predefined failure threshold,
we determine that the monitored system fails and can no longer
work. Therefore, at the inspection time tk the predicted RUL
and its uncertainty interval [RUL(tk),RUL(tk)] are determined
as

RUL(tk) = min{t∗|µc,t∗ ≥ cth} − tk, (37a)

RUL(tk) = min{t∗|ct∗ ≥ cth} − tk, (37b)
RUL(tk) = min{t∗|ct∗ ≥ cth} − tk, (37c)

with cth being the predefined failure threshold.
When the historical data is rather limited or even unavailable,

the proposed combination of RVM and trajectory similarity is
expected to produce an improved prediction accuracy compared
to just using a single prediction model or a deep learning model.
The reasons are as follows:

• When the run-to-failure data is rather limited, the offline
mode clustering of historical trajectories still works (see
Remark 2), and the two predictions from RVM and tra-
jectory similarity take complementary roles, hence their
combination produces an improved performance than us-
ing any one of them alone. On one hand, the proposed
ensemble method selects historical degradation trajecto-
ries with sufficient similarity to the online data such that
the long-term prediction accuracy is enhanced compared
to using RVM alone. On the other hand, if all histori-
cal degradation trajectories have a low level of similarity
to the online data, the similarity based prediction alone is
unreliable. In this case, with the above Bayesian ensem-
ble method, the similarity based prediction would be as-
signed with a lower weight, while the RVM based predic-
tion takes the dominant role in the fused prediction. The
fusion weights assigned to these two predictions are auto-
matically determined by Bayesian learning as in (28)–(30).

• When no historical run-to-failure data is available, the of-
fline mode clustering of historical trajectories presented in
Section 2.1 is omitted, and the similarity based prediction
cannot work. In this case, the proposed ensemble method
can still provide RVM based prediction, which leverages
the online data before the current time instant to construct
the RVM model.

• When the historical data is unavailable or rather limited,
the proposed ensemble method still works as explained
above, whilst the deep learning based method might fail
to construct a reliable prediction model with such a small
amount of training data.

Remark 4. The training window length ton is the number of
HI samples of the test trajectory used to determine the model
parameters involved in mode-dependent RVM/similarity based
predictions and Bayesian regression based fusion. Selecting the
training window length ton involves a tradeoff as follows. With
a larger length ton, the training window contains more infor-
mation of the global degradation dynamics, but also includes
more outdated data which may not reflect the future degradation
trend. On the other hand, using a smaller length ton, the train-
ing phase focuses on updated information that is more relevant
to future degradation, but could be sensitive to noisy variations
within a rather local window. Therefore, ton should be neither
too large nor too small.

3. Case study: PHM2012 bearing dataset

In this section, we use the PHM2012 bearing dataset to verify
the effectiveness of the proposed algorithm. First, the dataset
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Table 1: Operating conditions in the PHM2012 bearing dataset.

Operating conditions Load (N) Rotating speed (rpm) Degradation trajectories

1 4000 1800 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7
2 4200 1650 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7
3 5000 1500 3-1, 3-2, 3-3

and the offline preparations are described. Then, the perfor-
mance comparisons of different RUL prediction algorithms are
illustrated in detail.

3.1. Data description and experimental setting

The PHM2012 bearing dataset [51] was utilized in the IEEE
PHM 2012 Data Challenge organized by FEMTO-ST. The ex-
perimental platform consisted of two main components: the ro-
tating part and the loading part. The rotating section comprised
a motor with 250W power and a maximum speed of 2830rpm,
which ensured that the second shaft rotated at a fixed speed
of 2000rpm. The loading component consisted of a pneumatic
jack that provided a dynamic load of 4000N on the bearing. The
collected degradation data for bearings primarily include vibra-
tion and temperature measurements. Two miniature accelerom-
eters were placed vertically on the outer ring of each bearing.
Every 10 seconds, the vibration measurements are collected at a
sampling frequency of 25.6kHz. We solely relied on the vibra-
tion data in this experiment. Table 1 summarizes the seventeen
bearings employed, under three distinct working conditions.

To evaluate the proposed method in the case of limited data,
we consider 9 scenarios using 9 degradation trajectories (i.e.,
1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 2-1, 3-2) from Table 1. Each
scenario selects one of the above trajectories as the test data,
and uses the other 8 degradation trajectories as the training data,
which is listed in Table 2.

3.2. Offline preparation

The offline preparation involves four steps, including HI ex-
traction, HI denoising, HI normalization, and degradation mode
clustering.

In this paper, the HI for the bearing is obtained from the
vibration signal using the Support Vector Data Description
method [52]. Specifically, it constructs a hypershere in the fea-
ture space such that most training samples in the healthy con-
dition are located within the hypershere and a weighted sum of
the hypershere radius and outliers’ penalty is minimized. The
HI of a given vibration feature vector is then defined to be its
distance to the center of the above hypershere. The trajectory
of extracted HIs generally exhibits a monotonically increasing
trend.

After HI extraction, noises in the extracted HIs need to be
filtered before the HI normalization step. To this end, we ap-
ply the SGolay filter [53] which utilizes local polynomial least
squares fitting in the time domain. The advantage of the filter
is that it effectively eliminates noise while preserving the shape
of the degradation trajectory.

Following the HI denoising step, we employ (1) and (2) to
normalize the HI values such that they are within the same
range. In this case, we set HIdef = 0.94 and determine
mean(HIhealthy) to be the mean of the first 100 sampling points
of each bearing.

As the last step in offline preparation, mode clustering in Sec-
tion 2.1 is applied. The HTs are divided into two modes, and we
construct a trajectory library for each modes. Specifically, bear-
ings 1-1 and 1-3 belong to the slow degradation mode, while the
other bearings degrade rapidly.

3.3. Results and discussions

In this subsection, the bearing HI/RUL predictions are calcu-
lated every 20 seconds, with tuning parameters as below:

• Dimension n of extracted feature vector for mode cluster-
ing: Its influence on model performance is explained in
Remark 3. We choose n = 10 in this case study.

• Training window length ton for mode-dependent
RVM/similarity based prediction and Bayesian regression
based fusion: Its influence on model performance is
explained in Remark 4. The training window is set to
include ton = 20 HI samples here.

• Hyperparameters of kernel functions used in mode-
dependent RVM based prediction: A rich set of hyper-
parameter values in the kernel library generally implies a
higher expressive power, but requires a heavier computa-
tional cost. For the rapid degradation mode, we choose
exponential kernels with widths {22, 23, 24, · · · , 30} and
polynomial kernels with degrees {0.1, 0.2, 0.3, · · · , 4}; for
the slow degradation mode, we choose exponential kernels
with widths {5,

√
50,
√

75, · · · ,
√

550, 22, 23, · · · , 26} and
polynomial kernels with degrees {0.5, 1, 1.5, · · · , 20}.

Even though further fine tuning of the above parameters is not
performed, our proposed Bayesian ensemble method achieves
improved results discussed as follows.

Figure 6 shows the HI prediction results using mode-
dependent RVM, trajectory similarity and Bayesian ensemble
methods. It can be seen that the Bayesian ensemble predic-
tion is more accurate than the mode-dependent RVM based
prediction, due to enhancing long-term prediction accuracy by
exploiting similar historical trajectories. The mode-dependent
similarity based method achieves the best performance in Fig-
ure 6(a) but gives the worst performance in Figure 6(b), because
the test bearing 3-2 in Figure 6(a) has relatively high similar-
ity with some HTs, and the test bearing 1-1 in Figure 6(b) has
rather low similarity with all HTs. This shows that accuracy of
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(a) Bearing 3-2 (b) Bearing 1-1

Figure 6: The HI predictions using mode-dependent RVM based, mode-dependent similarity based, and Bayesian ensemble approaches for bearings 3-2 and 1-1.

the mode-dependent similarity based method highly relies on
degree of similarity between the test trajectory and HTs. In
comparison, the Bayesian ensemble prediction has more ad-
vantage if the test trajectory has low similarity with HTs. As
illustrated in Figure 6(b), the Bayesian ensemble prediction
achieves the highest accuracy due to assigning a low belief to
the poorly performed similarity based prediction.

To demonstrate the superiority of the proposed ensemble al-
gorithm, extensive comparisons are made with the hybrid RVM
[5], CNN [54], and hybrid BNN [24] based methods. Figure 7
illustrates the RUL predictions of the first three methods applied
to bearings 1-1, 1-4, 1-5, 1-7, 2-1, and 2-2, respectively. In each
subfigure of Figure 7, the RUL prediction starts after detecting
the fault. In Figure 7, smaller deviation from the real RUL (blue
solid line) implies better prediction performance. It can be seen
that both the CNN and hybrid RVM based methods (blue and
yellow dashed lines) give large prediction errors, which is due
to not explicitly coping with limited training data. In compari-
son, the overall performance of our proposed Bayesian ensem-
ble method (purple dashed line) is much better.

To quantitatively evaluate the RUL prediction accuracy of
these five algorithms, relative error (RE), mean absolute per-
centage error (MAPE), mean absolute error (MAE), root mean
squared error (RMSE), and coefficient of determination (R2)

are used as the assessment criteria, i.e.,

RE(ti) =
|R̂UL(ti) − RUL(ti)|

RUL(ti)
× 100%, (38a)

MAPE =
1

Np

Np∑
i=1

RE(ti), (38b)

MAE =
1

Np

Np∑
i=1

|R̂UL(ti) − RUL(ti)|, (38c)

RMSE =

√√√
1

Np

Np∑
i=1

(
R̂UL(ti) − RUL(ti)

)2
, (38d)

R2 = 1 −

∑Np

i=1

(
R̂UL(ti) − RUL(ti)

)2

∑Np

i=1

(
RUL − RUL(ti)

)2 , (38e)

where R̂UL(ti) and RUL(ti) are the predicted RUL and the real
RUL at the inspection time ti, Np is the number of observations,
and RUL represents the sample average of the true RULs. A
lower MAPE implies higher prediction accuracy.

Table 2 and Figure 8 show the performance evaluation results
of the six methods over 40% ∼ 90% of the bearing lifetime. As
shown in Table 2, the hybrid RVM and BNN methods give the
worst performance for most test bearings. Although the CNN
method achieves the smallest MAE and RMSE for bearings 1-1
and 1-3, its prediction accuracy varies drastically for the other
test bearings. Note that the smallest MAPE/MAE/RMSE is ob-
tained by one of our proposed methods: mode-dependent RVM
based prediction, mode-dependent similarity based prediction,
and Bayesian ensemble method. The R2 index is computed
over 80% ∼ 100% of the bearing lifetime. The hybrid RVM,
CNN, and hybrid BNN methods are not listed in Table 2 be-
cause each of these methods gives negative R2 values for more
than 5 test bearings. This implies that their corresponding pre-
diction models are even worse than just using the averaged true
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Figure 7: Comparison of RUL prediction with three different approaches for bearings 1-1, 1-4, 1-5, 1-7, 2-1, and 2-2.
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Figure 8: Boxplots reflecting the dispersion of REs of the five methods applied
to the PHM2012 bearing dataset. The horizontal red line indicates the median
RE.

RUL over the future time window. In comparison, our proposed
Bayesian ensemble method gives positive R2 values for all test
bearings, and achieves the largest averaged R2 value. It should
be also be noted that Figure 8 further depicts the dispersion of
REs generated by each method for all test bearings over the con-
sidered life span. It can be seen that the REs of the proposed
Bayesian ensemble method have the lowest dispersion, which
again illustrates the performance superiority of our proposed
method.

The MAPE and RE of the proposed Bayesian ensemble
method are the smallest in most cases, as expected. The su-
perior performance of the ensemble algorithm is attributed to
the following reasons:

i) By combining the similarity and RVM based predictions,
the proposed Bayesian ensemble method not only ad-
dresses the limitation of RVM’s inadequate long-term pre-
diction capability by incorporating prior knowledge of
similar HTs, but also mitigates performance loss of the
similarity based prediction due to lack of highly similar
HTs.

ii) The hybrid RVM based method in [5] suffers from high
computational cost due to a wide selection range of kernel
function parameters. Additionally, relying solely on RVs
for degradation trend prediction, especially for long-term
forecasts, may fail to capture the latest trend and result in
poor RUL prediction. In contrast, the proposed method es-
tablishes mode-specific kernel libraries using HT data, sig-
nificantly reducing the number of kernel functions. This
computational efficiency makes our method more suitable
for real-time computations compared to the hybrid ap-
proach in [5].

iii) The CNN and hybrid BNN methods in [24, 54] require
massive training data to enhance generalization. However,
in this scenario, the training data size is limited to 11 HTs,
which may not be sufficient for stable and accurate RUL
predictions. In contrast, the proposed method relies less
on the amount of training data, and the trajectory similar-
ity compensates for the long-term prediction capability of
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Table 2: Performance comparisons of RUL prediction methods on PHM2012 bearing dataset. The best performance metric in each column is highlighted in bold.

Methods Test bearings Averaged
1-1 1-2 1-3 1-4 1-5 1-6 1-7 2-1 2-2 2-5 3-2 3-3

Performance metric: MAPE (%)
Hybrid RVM [5] 66.60 61.30 96.28 163.46 35.14 80.38 78.46 55.72 42.64 109.77 70.26 131.09 82.59
CNN [54] 8.84 75.77 8.52 20.59 56.80 42.06 35.30 41.96 34.27 359.34 114.05 59.46 71.41
Hybrid BNN [24] 20.23 39.15 75.79 27.66 90.51 37.07 17.93 294.27 636.94 104.77 38.94 8.55 115.98
Mode-dependent RVM 32.75 45.14 34.05 6.34 19.62 45.75 14.40 35.65 29.95 99.36 34.32 28.54 35.49
Mode-dependent similarity 9.23 31.44 7.09 46.19 43.61 18.11 52.46 20.21 55.41 129.83 91.50 20.18 43.77
Bayesian ensemble 19.13 31.77 22.02 9.86 38.67 34.37 19.20 31.51 34.02 98.10 21.84 5.75 30.52

Performance metric: MAE
Hybrid RVM [5] 239.47 15.07 224.21 71.71 9.40 9.00 15.73 7.89 10.25 14.63 4.00 14.50 52.99
CNN [54] 32.57 15.46 22.59 11.28 13.46 5.63 6.61 5.97 7.57 47.77 6.75 4.26 14.99
Hybrid BNN [24] 91.42 7.64 234.80 3.72 13.27 5.62 3.72 30.05 178.42 18.13 21.81 0.83 50.79
Mode-dependent RVM 126.19 11.21 108.62 4.53 4.27 5.78 3.60 5.11 6.25 16.55 2.40 2.33 24.74
Mode-dependent similarity 40.78 8.36 23.21 25.41 10.53 2.22 10.67 2.67 12.17 22.18 5.60 1.67 13.79
Bayesian ensemble 64.11 8.43 72.40 5.79 8.67 4.78 4.40 4.44 7.75 16.55 1.80 0.50 16.63

Performance metric: RMSE
Hybrid RVM [5] 295.75 18.93 226.64 123.48 13.94 9.00 16.76 9.15 17.55 20.33 4.00 23.15 64.89
CNN [54] 39.59 17.69 25.28 13.95 17.13 6.52 6.94 13.40 9.82 63.95 6.86 5.00 18.84
Hybrid BNN [24] 167.75 9.00 262.67 4.77 16.18 6.80 5.29 42.45 399.12 37.28 32.64 1.08 82.08
Mode-dependent RVM 142.36 13.86 135.39 9.38 6.54 6.13 5.44 6.02 8.26 21.52 2.61 2.65 30.01
Mode-dependent similarity 57.26 11.28 34.18 30.37 13.87 2.40 11.37 3.46 15.86 29.56 5.76 2.31 18.14
Bayesian ensemble 73.89 11.40 99.74 9.43 12.01 5.41 5.55 5.12 10.67 22.07 2.14 0.71 21.51

Performance metric: R2
Mode-dependent RVM 0.41 0.54 0.58 1.00 0.54 -0.58 0.95 0.01 0.84 -0.70 0.15 0.50 0.35
Mode-dependent similarity 0.90 0.93 0.99 0.77 0.94 0.65 -0.73 0.67 0.19 -0.35 -3.15 0.85 0.22
Bayesian ensemble 0.84 0.92 0.96 0.99 0.78 0.23 0.73 0.28 0.89 0.80 0.43 0.90 0.73

RVM, resulting in more accurate RUL predictions.

4. Case study: Toyota battery dataset

In this section, we apply the proposed Bayesian ensemble al-
gorithm to battery RUL prediction, which further demonstrates
its potential applicability to different types of engineering sys-
tems. We utilize capacity and cycle information from the Toy-
ota battery dataset considered in [55] to complete the degener-
ated trajectory characterization.

4.1. Data description and experimental setting

The Toyota battery dataset includes data for 124 commercial
LFP/graphite cells under 72 different fast-charging conditions.
And the dataset contains measurements of charge and discharge
currents, voltage, capacity and cycles. Capacity is used to quan-
tify the state-of-health of batteries, which serves as the HI for
RUL prediction.

Fig. 9 depicts the capacity degradation of batteries whose
nominal capacities are 1.1Ah. The cycle life is defined as the
cycle number at which the battery capacity drops to 0.88 Ah.

To evaluate RUL prediction accuracy using limited histori-
cal data, we set up a challenging scenario as follows. Firstly, 5
degradation trajectories are randomly selected for testing. Sec-
ondly, only 16 degradation trajectories including two degrada-
tion modes are used as historical data, and each degradation
mode contains 8 trajectories.
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Figure 9: Discharge capacity of LFP/graphite cells

4.2. Offline preparation

We follow the procedures in Section 3.2 to process battery
data offline. Since the battery capacity servers as the HI and
each degradation trajectory starts at 1.1Ah and ends at 0.88Ah,
the normalization step is not required. During the offline phase,
mode clustering is performed, where the number of clusters is
determined to be 2.

xii



Table 3: Performance comparisons of RUL prediction methods on Tokyo battery dataset. The best performance metric in each column is highlighted in bold.

Methods Test cells Averaged
Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell7 Cell 8

Performance metric: MAPE (%)
Hybrid RVM [5] 8.50 20.41 7.91 85.94 68.48 93.00 16.67 13.96 39.36
CNN [54] 63.44 43.14 73.82 15.69 11.90 13.14 11.07 27.56 32.47
Hybrid BNN [24] 20.60 16.88 80.28 18.63 73.18 82.17 15.37 25.03 41.52
Mode-dependent RVM 24.05 9.09 23.78 12.46 15.80 32.81 9.41 21.70 18.64
Mode-dependent similarity 25.89 8.71 37.67 10.75 15.20 7.33 29.00 19.76 19.29
Bayesian ensemble 9.31 5.73 11.27 11.60 13.55 16.20 10.62 14.83 11.64

Performance metric: MAE
Hybrid RVM [5] 4.70 11.57 3.79 188.13 123.27 191.54 19.05 23.92 70.75
CNN [54] 37.53 34.19 43.01 26.62 18.86 26.89 9.23 54.50 31.35
Hybrid BNN [24] 15.70 27.87 50.04 27.51 54.56 50.63 19.84 35.31 35.18
Mode-dependent RVM 16.70 9.11 17.43 26.54 29.28 59.36 9.99 28.02 24.55
Mode-dependent similarity 14.91 5.84 20.43 15.20 22.95 13.53 27.36 35.01 19.40
Bayesian ensemble 5.98 3.80 8.24 21.38 23.03 28.74 8.72 21.46 15.17

Performance metric: RMSE
Hybrid RVM [5] 5.22 13.00 4.38 286.04 169.96 290.24 30.63 37.45 104.61
CNN [54] 43.17 39.93 49.39 31.40 23.05 46.15 9.53 72.77 39.42
Hybrid BNN [24] 18.34 39.13 67.94 33.97 65.75 62.35 24.15 60.75 46.55
Mode-dependent RVM 22.38 13.49 25.19 44.17 41.07 141.52 18.94 45.87 44.08
Mode-dependent similarity 17.07 6.27 24.85 17.72 26.44 20.59 39.29 54.41 25.83
Bayesian ensemble 8.88 4.16 13.03 31.59 29.88 52.92 12.56 26.84 22.48

Performance metric: R2
Mode-dependent RVM 0.19 0.83 -0.08 0.70 0.65 -3.17 0.77 0.52 0.05
Mode-dependent similarity 0.53 0.96 -0.05 0.95 0.85 0.91 0.03 0.33 0.56
Bayesian ensemble 0.87 0.98 0.71 0.85 0.81 0.40 0.90 0.84 0.80

Figure 10: Comparison of RUL prediction results with three different approaches for battery cells 2, 5, 6, and 8.

4.3. Results and discussions
As describe in the first paragraph of Section 3.3, the same

tuning parameters are involved. For this battery dataset, the di-

mension n of the extracted feature vector for mode clustering
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Figure 11: Boxplots reflecting the dispersion of REs of the five methods applied
to the Tokyo battery dataset. The horizontal red line indicates the median RE.

and the training window length ton are still set to n = 10 and
ton = 100, respectively. Since the clustered degradation modes
of battery cells do not have distinct difference as the rapid and
slow modes of the bearing degradation in Section 3, the ker-
nel libraries of cell degradation modes are set to be the same:
each kernel library includes exponential kernels with widths
{5,
√

50,
√

75, · · · ,
√

550, 22, 23, · · · , 30} and polynomial ker-
nels with degrees {0.5, 1, 1.5, · · · , 16}.

Most literature start making the RUL prediction of batteries
at 75% of their life. However, this specific moment is unknown
a priori in practice. Therefore, we start battery RUL prediction
when its capacity drops to 95% of the nominal capacity, i.e.,
1.045Ah. The battery RUL is predicted every two cycles, using
the hybrid RVM [5], CNN [54], hybrid BNN [24] based meth-
ods, as well as the proposed mode-dependent RVM/similarity
based methods and the Bayesian ensemble method again.

As depicted in Figure 10, the proposed ensemble prediction
method demonstrates superior accuracy and stability compared
to the RVM-model hybrid and CNN methods in [5, 54].

The performance metrics defined in (38) are utilized to as-
sess the prediction results, as presented in Table 3 and Figure
11. The MAPEs and REs of the implemented methods over
10% ∼ 85% of the cycle life are evaluated for performance
comparison. It can be seen that the CNN method in [54] and the
hybrid BNN method in [24] perform poorly due to limited train-
ing data. In addition, although the hybrid RVM based method
in [5] achieves the most accurate prediction for Cells 1 and 3,
its prediction accuracy varies drastically among different cells,
as listed in Table 3. In terms of the R2 index, the hybrid RVM,
CNN, and hybrid BNN methods are not included in Table 3
again, because each of these methods gives negative R2 values
for 3 test cells. In contrast, our proposed methods, especially
the Bayesian ensemble approach gives the largest averaged R2
value. As depicted in Figure 11, our proposed ensemble method
yields the best overall performance, i.e., consistently producing

low REs with the least dispersion.

5. Conclusion

This paper proposes a novel mode-dependent RVM-
similarity based Bayesian ensemble algorithm for RUL pre-
diction. With offline mode clustering and online mode iden-
tification, mode-dependent RVM and similarity based predic-
tions are constructed. These prediction results are later fused in
a Bayesian ensemble scheme that produces a fused prediction
with uncertainty quantification. In the case study, the proposed
algorithm as well as three existing methods are tested using lim-
ited data, where only 11 and 16 historical R2F trajectories are
used as training data in the two case studies of bearings and bat-
teries, respectively. The superior performance achieved by our
proposed method on the PHM2012 bearing dataset and Toyota
battery dataset demonstrates its potential applicability to a wide
range of industrial systems under limited R2F data.

Still our proposed Bayesian ensemble method has one limi-
tation: it requires each historical degradation trajectory to cover
the entire range from the healthy status to the failure point.
However, due to various maintenance activities that prevent
failures, it is common practice that only early-stage or partial
degradation data are available. Therefore, our future work will
focus on accurate RUL prediction using a limited number of
incomplete degradation trajectories.

Appendix A. Derivation for the fused HI prediction in (35)

Using (34), we derive (35) as follows. Firstly, the predicted
mean µc,t∗ is expressed as

µc,t∗ =
1
Ns

Ns∑
i=1

∫
ct∗N

(
ct∗

∣∣∣µc(zt∗ (i)), σ2
c(zt∗ (i))

)
dct∗

=
1
Ns

Ns∑
i=1

µc(zt∗ (i))

(A.1)

which gives (35b). Secondly, the predicted variance σ2
c,t∗ is de-

rived as

σ2
c,t∗ =

∫ (
ct∗ − µc,t∗

)2
 1

Ns

Ns∑
i=1

N
(
ct∗

∣∣∣µc(zt∗ (i)), σ2
c(zt∗ (i))

) dct∗

=
1
Ns

Ns∑
i=1

∫ (
ct∗ − µc,t∗

)2
N

(
ct∗

∣∣∣µc(zt∗ (i)), σ2
c(zt∗ (i))

)
dct∗ .

(A.2)
Then we have (35c) by substituting(

ct∗ − µc,t∗
)2
=

[
(ct∗ − µc(zt∗ (i))) +

(
µc(zt∗ (i)) − µc,t∗

)]2

= (ct∗ − µc(zt∗ (i)))2 +
(
µc(zt∗ (i)) − µc,t∗

)2

+ 2 (ct∗ − µc(zt∗ (i)))
(
µc(zt∗ (i)) − µc,t∗

) (A.3)

into (A.2).
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